Literatura académica sobre el tema "Plasmonic properties"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Plasmonic properties".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Plasmonic properties"
Hu, Bin, Ying Zhang y Qi Jie Wang. "Surface magneto plasmons and their applications in the infrared frequencies". Nanophotonics 4, n.º 4 (6 de noviembre de 2015): 383–96. http://dx.doi.org/10.1515/nanoph-2014-0026.
Texto completoYou, Chenglong, Apurv Chaitanya Nellikka, Israel De Leon y Omar S. Magaña-Loaiza. "Multiparticle quantum plasmonics". Nanophotonics 9, n.º 6 (17 de abril de 2020): 1243–69. http://dx.doi.org/10.1515/nanoph-2019-0517.
Texto completoBabicheva, Viktoriia E. "Optical Processes behind Plasmonic Applications". Nanomaterials 13, n.º 7 (3 de abril de 2023): 1270. http://dx.doi.org/10.3390/nano13071270.
Texto completoGenç, Aziz, Javier Patarroyo, Jordi Sancho-Parramon, Neus G. Bastús, Victor Puntes y Jordi Arbiol. "Hollow metal nanostructures for enhanced plasmonics: synthesis, local plasmonic properties and applications". Nanophotonics 6, n.º 1 (6 de enero de 2017): 193–213. http://dx.doi.org/10.1515/nanoph-2016-0124.
Texto completoKhan, Pritam, Grace Brennan, James Lillis, Syed A. M. Tofail, Ning Liu y Christophe Silien. "Characterisation and Manipulation of Polarisation Response in Plasmonic and Magneto-Plasmonic Nanostructures and Metamaterials". Symmetry 12, n.º 8 (17 de agosto de 2020): 1365. http://dx.doi.org/10.3390/sym12081365.
Texto completoTao, Z. H., H. M. Dong y Y. F. Duan. "Anomalous plasmon modes of single-layer MoS2". Modern Physics Letters B 33, n.º 18 (26 de junio de 2019): 1950200. http://dx.doi.org/10.1142/s0217984919502002.
Texto completoKuzmin, Dmitry A., Igor V. Bychkov, Vladimir G. Shavrov y Vasily V. Temnov. "Plasmonics of magnetic and topological graphene-based nanostructures". Nanophotonics 7, n.º 3 (23 de febrero de 2018): 597–611. http://dx.doi.org/10.1515/nanoph-2017-0095.
Texto completoVerma, Sneha, Akhilesh Kumar Pathak y B. M. Azizur Rahman. "Review of Biosensors Based on Plasmonic-Enhanced Processes in the Metallic and Meta-Material-Supported Nanostructures". Micromachines 15, n.º 4 (6 de abril de 2024): 502. http://dx.doi.org/10.3390/mi15040502.
Texto completoAli, Adnan, Fedwa El-Mellouhi, Anirban Mitra y Brahim Aïssa. "Research Progress of Plasmonic Nanostructure-Enhanced Photovoltaic Solar Cells". Nanomaterials 12, n.º 5 (25 de febrero de 2022): 788. http://dx.doi.org/10.3390/nano12050788.
Texto completoAbed, Jehad, Nitul S. Rajput, Amine El Moutaouakil y Mustapha Jouiad. "Recent Advances in the Design of Plasmonic Au/TiO2 Nanostructures for Enhanced Photocatalytic Water Splitting". Nanomaterials 10, n.º 11 (15 de noviembre de 2020): 2260. http://dx.doi.org/10.3390/nano10112260.
Texto completoTesis sobre el tema "Plasmonic properties"
Cole, R. M. "Plasmonic properties of metal nanovoids". Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.597832.
Texto completoDieleman, Frederik. "Quantum properties of plasmonic waveguides". Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/49436.
Texto completoPeruch, Silvia. "Ultrafast properties of plasmonic nanorod metamaterial". Thesis, King's College London (University of London), 2016. https://kclpure.kcl.ac.uk/portal/en/theses/ultrafast-properties-of-plasmonic-nanorod-metamaterial(d981b5e4-b959-4193-8cf1-219b68de08d6).html.
Texto completoChen, Lihui. "Synthesis and Plasmonic Properties of Copper-based Nanocrystals". 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/217134.
Texto completoStrandberg, Östman Felicia. "Optical Properties of Plasmonic Ag/Ni Square Nanostructures". Thesis, Uppsala universitet, Materialfysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-256885.
Texto completoChing, Suet Ying. "Plasmonic properties of silver-based alloy thin films". HKBU Institutional Repository, 2015. https://repository.hkbu.edu.hk/etd_oa/194.
Texto completoHung, Yu-Ju. "Studies of the optical properties of plasmonic nanostructures". College Park, Md.: University of Maryland, 2007. http://hdl.handle.net/1903/7735.
Texto completoThesis research directed by: Dept. of Electrical and Computer Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Kolkowski, Radoslaw. "Studies of nonlinear optical properties of plasmonic nanostructures". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLN001/document.
Texto completoThe aim of this thesis and the underlying research work is to demonstrate the benefits emerging from combination of the peculiar properties of plasmonic nanostructures with the most interesting aspects of nonlinear optics. For this purpose, analytical and numerical modeling was combined with experimental work, which included nanofabrication and measurements performed by means of polarization-resolved nonlinear confocal microscopy and by modified Z-scan technique (called "f-scan").It has been shown that the effective anisotropy of the second-harmonic generation in plasmonic crystals (formed by rectangular arrays of tetrahedral recesses in silver surface) can be controlled by proper choice of lattice constants. It also has been shown that this anisotropy arises mainly from the anisotropic photonic band structure, exhibiting plasmonic band gap with plasmonic band edge states, enabling enhancement of the local electric field.Two-dimensional chiral arrangements of triangular gold nanoparticles, forming plasmonic enantiomeric "meta-molecules", have been studied by nonlinear microscopy operating with circularly polarized light and by numerical modeling, revealing strong chiroptical effect in backscattered second-harmonic radiation. Small size of individual enantiomers allows to create "watermarks", encoded by the chirality of meta-molecules, which can be readout by imaging of second-harmonic generation excited by circularly polarized laser beam.Quantitative characterization of the third-order optical nonlinearity and saturable absorption efficiency of aqueous solutions of graphene and gold-nanoparticle decorated graphene has been performed by novel "f-scan" technique, which has been created and developed by incorporation of a focus-tunable lens into traditional Z-scan. These studies have shown that the graphene exhibits very efficient ultrafast saturable absorption, which is occasionally suppressed by reverse saturable absorption. Moreover, it turns out that decoration of graphene by gold nanoparticles may cause a slight improvement of the saturable absorption efficiency parameter within spectral range of their plasmon resonances.In summary, the following thesis presents various nonlinear optical properties of plasmonic nanostructures. Different possibilities of controlling these properties by means of nano-engineering, supported by analytical and numerical modeling, is also analyzed and demonstrated. This work opens up new perspectives for fabrication and rational design of novel photonic nano-materials and nano-devices based on nonlinear nanoplasmonic phenomena
MAGNOZZI, MICHELE. "Temperature-dependent optical properties of composite plasmonic nanomaterials". Doctoral thesis, Università degli studi di Genova, 2019. http://hdl.handle.net/11567/941310.
Texto completoFERRERA, MARZIA. "Local optical properties of 2D semiconductor/plasmonic heterostructures". Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1077989.
Texto completoLibros sobre el tema "Plasmonic properties"
service), SpringerLink (Online, ed. Self-Organized Arrays of Gold Nanoparticles: Morphology and Plasmonic Properties. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Buscar texto completoSönnichsen, Carsten. Plasmons in metal nanostructures. Göttingen: Cuvillier, 2001.
Buscar texto completoTurunen, Anton E. Plasmons: Structure, properties, and applications. Hauppauge, N.Y: Nova Science Publishers, 2011.
Buscar texto completolibrary, Wiley online, ed. Nanophotonic materials: Photonic crystals, plasmonics, and metamaterials. Weinheim: Wiley-VCH, 2008.
Buscar texto completo1966-, Kawata Satoshi, Shalaev Vladimir M. 1957-, Tsai Din P. 1959- y Society of Photo-optical Instrumentation Engineers., eds. Plasmonics: Nanoimaging, nanofabrication, and their applications II : 16-17 August, 2006, San Diego, California, USA. Bellingham, Wash: SPIE, 2006.
Buscar texto completoJ, Halas Naomi y Society of Photo-optical Instrumentation Engineers., eds. Plasmonics: Metallic nanostructures and their optical properties : 3-5 August 2003, San Diego, California, USA. Bellingham, Wash., USA: SPIE, 2003.
Buscar texto completo1975-, Qiu Min, ed. Optical properties of nanostructures. Singapore: Pan Stanford, 2011.
Buscar texto completoKawata, Satoshi. Plasmonics: Nanoimaging, nanofabrication, and their applications IV : 10-14 August 2008, San Diego, California, USA. Editado por SPIE (Society). Bellingham, Wash: SPIE, 2008.
Buscar texto completoCapítulos de libros sobre el tema "Plasmonic properties"
Zhang, Zhenglong. "Electromagnetic Properties of Materials". En Plasmonic Photocatalysis, 5–13. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5188-6_2.
Texto completoSong, Chengyi, Chen Zhang y Peng Tao. "Plasmonic Chiral Materials". En Chiral Nanomaterials: Preparation, Properties and Applications, 51–84. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527682782.ch3.
Texto completoSaliminasab, Maryam, Rostam Moradian y Farzad Shirzaditabar. "Tunable Plasmonic Properties of Nanoshells". En Reviews in Plasmonics, 141–68. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18834-4_6.
Texto completoTrügler, Andreas. "Nonlinear Optical Effects of Plasmonic Nanoparticles". En Optical Properties of Metallic Nanoparticles, 157–62. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25074-8_7.
Texto completoBerger, C., E. H. Conrad y W. A. de Heer. "Optical and plasmonic properties of epigraphene". En Physics of Solid Surfaces, 741–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53908-8_171.
Texto completoHachtel, Jordan A. "The Plasmonic Response of Archimedean Spirals". En The Nanoscale Optical Properties of Complex Nanostructures, 91–104. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70259-9_6.
Texto completoSerdega, B. K., S. P. Rudenko, L. S. Maksimenko y I. E. Matyash. "Plasmonic optical properties and the polarization modulation technique". En Polarimetric Detection, Characterization and Remote Sensing, 473–500. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1636-0_18.
Texto completoMasciotti, Valentina, Denys Naumenko, Marco Lazzarino y Luca Piantanida. "Tuning Gold Nanoparticles Plasmonic Properties by DNA Nanotechnology". En DNA Nanotechnology, 279–97. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8582-1_19.
Texto completoKauranen, Martti, Hannu Husu, Jouni Mäkitalo, Robert Czaplicki, Mariusz Zdanowicz, Joonas Lehtolahti, Janne Laukkanen y Markku Kuittinen. "Second-Order Nonlinear Optical Properties of Plasmonic Nanostructures". En Challenges and Advances in Computational Chemistry and Physics, 207–35. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7805-4_6.
Texto completoSardana, Sanjay K., Sanjay K. Srivastava y Vamsi K. Komarala. "Tunable Plasmonic Properties from Ag–Au Alloy Nanoparticle Thin Films". En Springer Proceedings in Physics, 415–18. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97604-4_63.
Texto completoActas de conferencias sobre el tema "Plasmonic properties"
Takeuchi, Hiroki, Junfeng Yue, Keisuke Imaeda y Kosei Ueno. "Near-field spectral properties and ultrafast dynamics of coupled plasmonic nanostructures". En Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.p_cm16_12.
Texto completoKarakhanyan, Vage, Clement Eustache, Yannick Lefier y Thierry Grosjean. "Optomagnetism in plasmonic nanostructures". En Photonic and Phononic Properties of Engineered Nanostructures XII, editado por Ali Adibi, Shawn-Yu Lin y Axel Scherer. SPIE, 2022. http://dx.doi.org/10.1117/12.2612940.
Texto completoAbdollahramezani, Sajjad, Omid Hemmatyar, Hossein Taghinejad, Muliang Zhu, Alexander L. Gallmon y Ali Adibi. "Reconfigurable hybrid plasmonic-dielectric metasurfaces". En Photonic and Phononic Properties of Engineered Nanostructures XI, editado por Ali Adibi, Shawn-Yu Lin y Axel Scherer. SPIE, 2021. http://dx.doi.org/10.1117/12.2590717.
Texto completoSwillam, Mohamed A., Diaa Khalil, Qiaoqiang Gan y Raghi El Shamy. "Mid-infrared plasmonic gas sensor". En Photonic and Phononic Properties of Engineered Nanostructures VIII, editado por Ali Adibi, Shawn-Yu Lin y Axel Scherer. SPIE, 2018. http://dx.doi.org/10.1117/12.2290875.
Texto completoCrozier, Kenneth B. "Inverse design of plasmonic nanotweezers". En Photonic and Phononic Properties of Engineered Nanostructures XIV, editado por Ali Adibi, Shawn-Yu Lin y Axel Scherer. SPIE, 2024. http://dx.doi.org/10.1117/12.3010032.
Texto completoJoshi, Hira. "Optical properties of plasmonic nanostructures". En EMERGING INTERFACES OF PHYSICAL SCIENCES AND TECHNOLOGY 2019: EIPT2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0000524.
Texto completoGu, Guiru, Jarrod Vaillancourt y Xuejun Lu. "Backside configured surface plasmonic enhancement". En ELECTRONIC, PHOTONIC, PLASMONIC, PHONONIC AND MAGNETIC PROPERTIES OF NANOMATERIALS. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4870217.
Texto completoTaghinejad, Mohammad, Chenyi Xia, Martin Hrton, Kyutae Lee, Andrew Kim, Qitong Li, Burak Guzelturk et al. "Terahertz radiation of plasmonic hot carriers". En Photonic and Phononic Properties of Engineered Nanostructures XIV, editado por Ali Adibi, Shawn-Yu Lin y Axel Scherer. SPIE, 2024. http://dx.doi.org/10.1117/12.3010182.
Texto completoKanoda, Masatoshi, Kota Hayashi, Mamoru Tamura, Shiho Tokonami y Takuya Iida. "Detection of Biological Nanoparticles by Photothermal Convection with Plasmonic Nano-bowl Substrate". En Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.ctup16e_04.
Texto completoOoi, C. H. Raymond. "Quantum optical properties in plasmonic systems". En NATIONAL PHYSICS CONFERENCE 2014 (PERFIK 2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4915161.
Texto completoInformes sobre el tema "Plasmonic properties"
Hollingsworth, Jennifer, Victoria Nisoli, Ekaterina Dolgopolova, Paul Bourdin, Andrew West, siyuan zhang, Matthew Schneider, Sergei Ivanov y Maiken mikkelsen. Near Infrared Plasmonic Properties in Spinel Metal Oxide Nanocrystals. Office of Scientific and Technical Information (OSTI), agosto de 2023. http://dx.doi.org/10.2172/1993209.
Texto completoHalas, Naomi y Surbhi Lal. Plexcitonics: Coupled and Plasmon-Exciton Systems with Tailorable Properties. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 2013. http://dx.doi.org/10.21236/ada594759.
Texto completoHowe, James M. Using Plasmon Peaks in Electron Energy-Loss Spectroscopy to Determine the Physical and Mechanical Properties of Nanoscale Materials. Office of Scientific and Technical Information (OSTI), mayo de 2013. http://dx.doi.org/10.2172/1078573.
Texto completo