Literatura académica sobre el tema "Plasmonic nanoantennas"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Plasmonic nanoantennas".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Plasmonic nanoantennas"
Sanders, Stephen y Alejandro Manjavacas. "Nanoantennas with balanced gain and loss". Nanophotonics 9, n.º 2 (25 de febrero de 2020): 473–80. http://dx.doi.org/10.1515/nanoph-2019-0392.
Texto completoBarho, Franziska B., Fernando Gonzalez-Posada, Maria-Jose Milla, Mario Bomers, Laurent Cerutti, Eric Tournié y Thierry Taliercio. "Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin". Nanophotonics 7, n.º 2 (11 de noviembre de 2017): 507–16. http://dx.doi.org/10.1515/nanoph-2017-0052.
Texto completoKlemm, Maciej. "Novel Directional Nanoantennas for Single-Emitter Sources and Wireless Nano-Links". International Journal of Optics 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/348306.
Texto completoLereu, Aude L., Jacob P. Hoogenboom y Niek F. van Hulst. "Gap Nanoantennas toward Molecular Plasmonic Devices". International Journal of Optics 2012 (2012): 1–19. http://dx.doi.org/10.1155/2012/502930.
Texto completoPacheco-Peña, Victor, Rúben A. Alves y Miguel Navarro-Cía. "From symmetric to asymmetric bowtie nanoantennas: electrostatic conformal mapping perspective". Nanophotonics 9, n.º 5 (4 de febrero de 2020): 1177–87. http://dx.doi.org/10.1515/nanoph-2019-0488.
Texto completoda Silva, Marcelino L. C., Victor Dmitriev y Karlo Q. da Costa. "Application of Plasmonic Nanoantennas in Enhancing the Efficiency of Organic Solar Cells". International Journal of Antennas and Propagation 2020 (10 de marzo de 2020): 1–9. http://dx.doi.org/10.1155/2020/2719656.
Texto completoChen, Pai-Yen, Christos Argyropoulos y Andrea Alù. "Enhanced nonlinearities using plasmonic nanoantennas". Nanophotonics 1, n.º 3-4 (1 de diciembre de 2012): 221–33. http://dx.doi.org/10.1515/nanoph-2012-0016.
Texto completoDamasceno, Gabriel H. B., William O. F. Carvalho y Jorge Ricardo Mejía-Salazar. "Design of Plasmonic Yagi–Uda Nanoantennas for Chip-Scale Optical Wireless Communications". Sensors 22, n.º 19 (27 de septiembre de 2022): 7336. http://dx.doi.org/10.3390/s22197336.
Texto completoMilekhin, Ilya A., Sergei A. Kuznetsov, Ekaterina E. Rodyakina, Alexander G. Milekhin, Alexander V. Latyshev y Dietrich R. T. Zahn. "Localized surface plasmons in structures with linear Au nanoantennas on a SiO2/Si surface". Beilstein Journal of Nanotechnology 7 (26 de octubre de 2016): 1519–26. http://dx.doi.org/10.3762/bjnano.7.145.
Texto completoGili, Valerio F., Lavinia Ghirardini, Davide Rocco, Giuseppe Marino, Ivan Favero, Iännis Roland, Giovanni Pellegrini et al. "Metal–dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode". Beilstein Journal of Nanotechnology 9 (27 de agosto de 2018): 2306–14. http://dx.doi.org/10.3762/bjnano.9.215.
Texto completoTesis sobre el tema "Plasmonic nanoantennas"
Wang, Jiyong. "Plasmonic Nanoantennas". Thesis, Troyes, 2017. http://www.theses.fr/2017TROY0021.
Texto completoLinear and nonlinear optical responses of lithographically fabricated plasmonic nanoparticles (NPs) are investigated. Elastic scattering offers the fingerprints for localized surface plasmon resonances of NPs, which enhance nonlinear optical signals. Excitation polarization dependent far-field radiation of second-harmonic generation (SHG) shows a flipping effect, which is analysed from the aspects of resonant excitation shifting and SH phase interference as size changes. The radiations of metallic photoluminescence (MPL) in the weak and strong radiation field are studied sequentially. In the weak excitation, besides a process via electron-hole (e-h) pair recombination, particle plasmons (PPs) can be excited via Auger scattering of photo-excited d-band holes and the radiative decay of which gives rise to PPs modulated MPL. A model of total emission quantum efficiency involving both contributions has been used to explain MPL radiation difference between the bulk and the NPs. In the strong excitation, avalanche multiphoton PL (AMPL) is observed from the coupled heterodimers, which is interpreted as the recombination of avalanche ionized hot carriers seeded by multiphoton ionization (MI). MI is greatly assisted by local field of coupled NPs at the excitation stage. The giant photon emission can be evaluated as a function of local field environment and thermal factor of hot carriers. The spectral change from PPs modulated profile to the one indicates spontaneous emission of hot e-h pairs is explained by the diminishment of d-band hole scattering rate as temperature increases
Peter, Manuel [Verfasser]. "Active Plasmonic and Dielectric Nanoantennas / Manuel Peter". Bonn : Universitäts- und Landesbibliothek Bonn, 2017. http://d-nb.info/1149154187/34.
Texto completoMassa, Enrico. "Plasmonic nanoantennas for absorption and emission manipulation". Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/24720.
Texto completoSiadat, Mousavi Saba. "Periodic Plasmonic Nanoantennas in a Piecewise Homogeneous Background". Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22814.
Texto completoKnittel, Vanessa [Verfasser]. "Ultrafast nonlinear response of plasmonic nanoantennas / Vanessa Knittel". Konstanz : Bibliothek der Universität Konstanz, 2018. http://d-nb.info/1161343245/34.
Texto completoBlack, Leo-Jay. "Near-infrared nano-optical elements using plasmonic nanoantennas". Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/410269/.
Texto completoWang, Jiyong [Verfasser] y Pierre-Francois [Akademischer Betreuer] Brevet. "Plasmonic Nanoantennas / Jiyong Wang ; Betreuer: Pierre-Francois Brevet". Tübingen : Universitätsbibliothek Tübingen, 2020. http://d-nb.info/1203623054/34.
Texto completoMetzger, Bernd [Verfasser] y Harald [Akademischer Betreuer] Giessen. "Ultrafast nonlinear plasmonics : from dipole nanoantennas to hybrid complex plasmonic structures / Bernd Metzger. Betreuer: Harald Giessen". Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2014. http://d-nb.info/1062951379/34.
Texto completoJeannin, Mathieu Emmanuel. "Control of the emission properties of semiconducting nanowire quantum dots using plasmonic nanoantennas". Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY053/document.
Texto completoIn this work, we study the coupling between plasmonic nanoantennas and semiconducting nanowire quantum dots (NWQDs). This coupling requires spectral, spatial and polarisation matching of the antenna mode and of the NWQD emission. Hence, a full characterisation of both the antenna system and the NWQDs has to be performed to determine a relevant coupling geometry.Using cathodoluminescence (CL) we investigate the relation between the CL signal of circular patch plasmonic antennas and the electromagnetic local density of states (LDOS). The successive resonances supported by these antennas are complex superimpositions of Bessel modes of different radial and azimuthal order. Applying an analytical LDOS model, we show that we can fabricate and characterise antennas down to single mode resonances. However, the antennas CL spectrum goes beyond the radiative part of the LDOS. By changing the spacing layer thickness and the antennas materials, we propose an explanation for the origin of the additional CL signal we observe that is not related to the radiative LDOS of the patch antennas. We also demonstrate the fabrication of Al patch antennas working in the blue spectral range and apply our method to other geometries.We perform optical characterisation of different quantum dots (QDs) embedded inside semiconducting nanowires (NWs) made of II-VI materials. We use microphotoluminescence (µPL) to study the emission of single NWQDs. Time-resolved measurements and Fourier imaging allows us to extract their exciton lifetime and radiation patterns. The variability in the emission properties of the NWQDs due to inhomogeneity in the growth process are evidenced by studying a statistical set of nanowires. A complete model based on polarisation-resolved Fourier imaging and magneto-optical spectroscopy is detailed, allowing to fully determine the QD electronic and optical properties for an individual system.Finally, we develop a cathodoluminescence-based two-step electron-beam lithography technique to deterministically fabricate plasmonic antennas coupled to NWQDs, enhancing their µPL properties. The coupling results in an enhanced absorption of the pump laser inside the NW and in an increase of the radiative rate of the QD, leading to up to a two-fold intensity enhancement factor for the coupled system
Gmeiner, Benjamin [Verfasser] y Vahid [Gutachter] Sandoghdar. "Coherent Spectroscopy of Single Molecules in the Near-Field of Plasmonic Nanoantennas / Benjamin Gmeiner ; Gutachter: Vahid Sandoghdar". Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2017. http://d-nb.info/1139492551/34.
Texto completoLibros sobre el tema "Plasmonic nanoantennas"
Werner, Douglas H., Sawyer D. Campbell y Lei Kang, eds. Nanoantennas and Plasmonics: Modelling, design and fabrication. Institution of Engineering and Technology, 2020. http://dx.doi.org/10.1049/sbew540e.
Texto completoNanoantennas and Plasmonics: Modelling, Design and Fabrication. Institution of Engineering & Technology, 2020.
Buscar texto completoWerner, Douglas H., Sawyer D. Campbell y Lei Kang. Nanoantennas and Plasmonics: Modelling, Design and Fabrication. Institution of Engineering & Technology, 2020.
Buscar texto completoPucci, Annemarie y Marc Lamy de la Chapelle. Nanoantenna: Plasmon-Enhanced Spectroscopies for Biotechnological Applications. Pan Stanford Publishing, 2013.
Buscar texto completoPucci, Annemarie y Marc Lamy de la Chapelle. Nanoantenna: Plasmon-Enhanced Spectroscopies for Biotechnological Applications. Jenny Stanford Publishing, 2013.
Buscar texto completoNanoantenna: Plasmon-Enhanced Spectroscopies for Biotechnological Applications. Taylor & Francis Group, 2013.
Buscar texto completoCapítulos de libros sobre el tema "Plasmonic nanoantennas"
Sarychev, Andrey K. y Vladimir M. Shalaev. "Plasmonic Nanoantennas". En Continuum Models and Discrete Systems, 135. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2316-3_22.
Texto completoWang, Hancong. "Coupled Plasmonic Nanoantennas". En Advances in Intelligent Systems and Computing, 257–65. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48499-0_31.
Texto completoJeannin, Mathieu, Pamela Rueda-Fonseca, Rudeesun Songmuang, Edith Bellet-Amalric, Kuntheak Kheng y Gilles Nogues. "Coupling Semiconducting Nanowires to Plasmonic Nanoantennas". En NATO Science for Peace and Security Series B: Physics and Biophysics, 517–18. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-0850-8_56.
Texto completoMunárriz Arrieta, Javier. "Optical Nanoantennas with Tunable Radiation Patterns". En Modelling of Plasmonic and Graphene Nanodevices, 71–83. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07088-9_6.
Texto completoOzel, Tuncay. "Hybrid Semiconductor Core-Shell Nanowires with Tunable Plasmonic Nanoantennas". En Coaxial Lithography, 27–41. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45414-6_3.
Texto completoSoavi, Giancarlo, Giuseppe Della Valle, Paolo Biagioni, Andrea Cattoni, Stefano Longhi, Giulio Cerullo y Daniele Brida. "Ultrafast Non-thermal Response of Plasmonic Resonance in Gold Nanoantennas". En Springer Proceedings in Physics, 679–82. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13242-6_167.
Texto completoHegde, Ravi Sadananda. "Fractal Plasmonic Nanoantennae". En Reviews in Plasmonics, 55–76. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48081-7_4.
Texto completoBiswas, Richard Victor. "A Waveguide-Fed Hybrid Graphene Plasmonic Nanoantenna for On-Chip Wireless Optical Communication". En Proceedings of International Conference on Information and Communication Technology for Development, 107–24. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7528-8_9.
Texto completoFoti, Antonino, C. D’Andrea, A. Toma, B. Fazio, E. Messina, O. M. Maragò, Enzo Di Fabrizio, M. Lamy de La Chepelle y P. G. Gucciardi. "Polarization Properties of the SERS Radiation Scattered by Linear Nanoantennas with Two Distinct Localized Plasmon Resonances". En NATO Science for Peace and Security Series B: Physics and Biophysics, 503–4. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-0850-8_51.
Texto completoGREFFET, JEAN-JACQUES. "Plasmonic Nanoantennas". En World Scientific Handbook of Metamaterials and Plasmonics, 21–66. World Scientific, 2017. http://dx.doi.org/10.1142/9789813228726_0002.
Texto completoActas de conferencias sobre el tema "Plasmonic nanoantennas"
Yang, Morris M., Demid Sychev, Xiaohui Xu, Zach Martin, David Mandurus, Hasitha Suriya, Arachchige, Alexei Lagoutchev, Vladimir Shalaev y Alexandra Boltasseva. "Plasmonically Enhanced Second Harmonic Generation of Weyl Semimetal TaAs through field confinement". En CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_si.2022.sf4k.1.
Texto completoChen, Kuo-Ping, Vladimir P. Drachev, Joshua D. Borneman, Alexander V. Kildishev y Vladimir M. Shalaev. "Improving Plasmonic Nanoantennas". En Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/qels.2010.qtuf3.
Texto completoDayal, Govind, Ikki Morichika y Satoshi Ashihara. "Vibrational strong coupling between molecular vibration and subwavelength plasmonic cavity supporting gap plasmon mode". En JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2019. http://dx.doi.org/10.1364/jsap.2019.18a_e208_2.
Texto completoMekawey, Hosameldin I., Yehea Ismail y Mohamed A. Swillam. "silicon-based plasmonic nanoantennas". En Silicon Photonics XIV, editado por Graham T. Reed y Andrew P. Knights. SPIE, 2019. http://dx.doi.org/10.1117/12.2509341.
Texto completoPodolskiy, V. A., A. K. Sarychev, E. E. Narimanov y V. M. Shalaev. "Light manipulation with plasmonic nanoantennas". En IEEE Antennas and Propagation Society Symposium, 2004. IEEE, 2004. http://dx.doi.org/10.1109/aps.2004.1330577.
Texto completoHardy, Neil, Ahsan Habib, Tanya Ivanov y Ahmet A. Yanik. "Electro-plasmonic Nanoantennas for In Vivo Neural Sensing". En CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.atu4k.2.
Texto completoMaccaferri, Nicolò, Paolo Ponzellini, Giorgia Giovannini y Xavier Zambrana-Puyalto. "FRET characterization of hollow plasmonic nanoantennas". En Plasmonics in Biology and Medicine XVI, editado por Tuan Vo-Dinh, Ho-Pui A. Ho y Krishanu Ray. SPIE, 2019. http://dx.doi.org/10.1117/12.2515296.
Texto completoChoudhary, Saumya, Sylvia D. Swiecicki, Israel De Leon, Sebastian A. Schulz, Jeremy Upham, J. E. Sipe y Robert W. Boyd. "Superradiance in arrays of plasmonic nanoantennas". En Frontiers in Optics. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/fio.2016.ftu3d.4.
Texto completoRoxworthy, Brian J., Kaspar D. Ko, Anil Kumar, Kin Hung Fung, Gang Logan Liu, Nicholas X. Fang y Kimani C. Toussaint. "Bowtie Nanoantennas for Plasmonic Optical Trapping". En Optical Trapping Applications. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/ota.2011.otma2.
Texto completoHildebrandt, Andre, Matthias Reichelt, Torsten Meier y Jens Förstner. "Engineering plasmonic and dielectric directional nanoantennas". En SPIE OPTO, editado por Markus Betz, Abdulhakem Y. Elezzabi, Jin-Joo Song y Kong-Thon Tsen. SPIE, 2014. http://dx.doi.org/10.1117/12.2036588.
Texto completo