Literatura académica sobre el tema "Plasma froid atmosphérique"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Plasma froid atmosphérique".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Plasma froid atmosphérique"
Douat, Claire, Thierry Dufour y João Santos Sousa. "Les plasmas froids et le Vivant, de nouvelles avancées". Reflets de la physique, n.º 75 (abril de 2023): 24–30. http://dx.doi.org/10.1051/refdp/202375024.
Texto completoPouvesle, Jean-Michel y Éric Robert. "Applications thérapeutiques des plasmas froids atmosphériques". Reflets de la physique, n.º 33 (marzo de 2013): 17–22. http://dx.doi.org/10.1051/refdp/201333017.
Texto completoTesis sobre el tema "Plasma froid atmosphérique"
Cosimi, Julien. "Caractérisations d'un jet de plasma froid d'hélium à pression atmosphérique". Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30136.
Texto completoCold atmospheric pressure plasma jets are a subject of great interest in many biomedical fields for the past decade. In the various applications of these jets, the plasma generated can interact with many types of surfaces. Plasma jets influence the treated surfaces, but it is now well known that the treated surface also influences the plasma according to their characteristics. The work carried out in this thesis therefore aims to characterize a cold helium atmospheric pressure plasma jet in contact with three surfaces (dielectric, metallic and ultrapure water) by means of different electrical and optical diagnostics in order to understand the influence of the nature of the surfaces on the physical properties of the plasma and the chemical species generated. The first part of this thesis is focused on the study of the influence of surfaces on the plasma jet. Different parameters are studied, such as the nature of treated surfaces, the gas flow, the distance between the outlet of the device and the surface or the composition of the injected gas. For this purpose, helium flow at the outlet of the device is followed by Schlieren imagery with and without the discharge. Emission spectroscopy is used to determine the emissive species generated by the plasma. ICCD imagery is employed to follow the generation and the propagation of the discharge and the distribution of several excited species in the jet by using band-pass interference filters. A dielectric target causes the ionization wave to spread over its surface and a conductive target leads to the formation of a conduction channel. The evolution of excited species densities (OH*, N2*, He* and O*) increases with the relative permittivity of the treated surface. As well known, active species generated by plasma jets play a fundamental role in the kinetics and the chemistry of the mechanisms linked to plasma processes. The second part of the present work therefore relates to the spatial and temporal evaluation of the densities of the hydroxyl radical OH which plays a major role in many cellular mechanisms. The spatial mapping and the temporal evolution of the absolute and relative densities of OH are obtained by LIF and PLIF laser diagnostics. The density of OH generated increases with the electrical conductivity of the treated surface. It can be noted that the OH molecules remain present in the helium channel between two consecutive discharges (several tens of microseconds). Finally, we focus on the production of chemical species in ultrapure water treated with plasma. The influence of different parameters on the concentration of species in the treated water has been studied to optimize the production of chemical species. In experimental conditions, grounding the ultrapure water during treatment increases the concentration of H2O2. Furthermore, the grounding induces a decrease in the NO2- concentration
Hamze, Hassan. "Dépôt d’oxydes métalliques sur verre par plasma froid à pression atmosphérique". Thesis, Lille 1, 2015. http://www.theses.fr/2015LIL10027.
Texto completoThe objective of this thesis is to develop and characterize the deposition of thin metal oxides based on silicon and tin by an atmospheric pressure cold plasma to improve properties of glass materials and find an ecological alternative to existing processes. This research is divided into three main parts: the first part consists in depositing from Hexamethyldisilan and Hexamethyldisiloxan thin films of SiO2/SiOxCy on soda-lime glass to improve its mechanical strength. The second part consists in depositing a thin layer of SnO2 on fluorosilicate glass from Tetrabutyltin and Tributyltin Oxide to develop an environmental friendly alternative to the current chemical vapor deposition process used in glass industry. Finally, the silicium and tin based deposits obtained are used in the third part to stop corrosion surface of fluorosilicate glasses. In parallel, the physicochemical properties of these thin films will be characterized with advanced technologies in order to optimize the deposits
Larbre, Juliette. "Décontamination de surface par un procédé plasma froid à pression atmosphérique". Paris 11, 2006. http://www.theses.fr/2006PA112134.
Texto completoThe aim of the study is to find a solution for surface decontamination. The project, build with a firm, was based on cold plasma physic using dielectric barrier discharge at atmospheric pressure. Microorganisms to kill are placed in the post-discharge with gas flow above 10 L/min. Two kinds of bacteria were tested (Corynebacterium glutamicum and spores of Bacillus subtilis) and some treatment conditions were changed: gas flow, relative humidity, surface humidity and temperature. Best performances show a high efficacy (4 log decrease in 5 minutes). From these good results we try to understand mechanisms which kill bacteria. The document discuss on three topics: plasma reactors (structure and electrical properties), gas phase chemistry and biological results
Savin, de Larclause Isabelle. "Dépôt organosilicie par plasma froid basse pression et pression atmosphérique sur substrats microstructurés". Toulouse 3, 2008. http://thesesups.ups-tlse.fr/870/.
Texto completoThis PhD works is part of an industrial project on ophthalmic optic, developed by the company Essilor. The aim is to prepare a technological step in the apprehension of the optical function of the glass and in their production. The innovative idea is based on the introduction of some actives functions in the glass, thanks to its discretisation. To do so, Essilor turns toward the microlectronic technologies, and especially the plasma technologies. The thematic treated here is the deposition of a thin film by plasma on a microstructurated substrate. In order to obtain a quality of the film homogeneous on the whole microstructure, the coating must be conformal, i. E. It must have a thickness, composition and structure constant on all the microstructure parts. Thus, the issue of this PhD is the understanding of the mechanisms which control this property, through the use of two different processes, a microwave ECR low pressure plasma and an Atmospheric Pressure Townsend discharge. The effect of process parameters (power, substrate polarisation, temperature, gas mixture) on the conformity was studied. This allowed checking the significance of the shadow effect at low pressure and to bring out the main role of the ions. At atmospheric pressure, although mean free pass is lower compared to the microstructure size, the coating is mainly concentrated on the superior regions of the microstructure. In order to understand this phenomena, reactive mass transfer simulation and electrical field simulation was done. The diffusion seems to be responsible, and these effects are accentuated by the repartition of the electrical field at the surface. The predominance of one of these phenomena (diffusion or field effect) changes in function of the process conditions
Panousis, Emmanouïl. "Réalisation et optimisation d'un réacteur plasma froid fonctionnant à pression atmosphérique : application aux traitements de surfaces". Pau, 2006. http://www.theses.fr/2006PAUU3027.
Texto completoA dielectric barrier discharge (DBD) in Nitrogen at atmospheric pressure was the object of this work. The aim was primarily to gain insight to the physico-chemical mechanisms governing such a discharge and to also apply this configuration to the surface treatment of metals. Here, the surface treatment takes place in spatial afterglow conditions. The discharge products (active species in particular) are blown out of the inter-electrode space due to the special plasma reactors' geometry and the high gas flow. This enables the treatment of large areas and hollow objects and could easily be used in an industrial production line. The surfaces of Al-2024 and TiA6V4 metal alloys were treated during this work in an effort to render them compatible to applications involving adhesion. This work is thus composed of 3 main parts: - Numerical modeling of the DBD: results here obtained permit to qualitatively describe the discharge's electrodynamical behavior and estimate its yield in the production of active species. - Experimental study of the DBD and the afterglow: electrical diagnostic techniques were used in order to compare the two reactors studied. Optical diagnostics were then applied that helped identify the active species produced by the DBD and “follow” them in the flowing afterglow in two different configurations: the unguided and the quartz tube guided afterglow. The dominant physico-chemical mechanisms for the active species were thus identified for these conditions. - Application of the DBD in the treatment of metallic surfaces in afterglow conditions: By macroscopic and microscopic means of surface characterization it was observed that the DBD flowing afterglow were studied induces a cleaning of organic contaminants of the surface as well a possible partial de-oxidation
Bres, Lucie. "Interaction entre un plasma froid à la pression atmosphérique et des surfaces thermoplastiques industrielles : application à l'activation de surface". Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30273/document.
Texto completoCarbon Fiber Reinforced Polymer (CFRP) using thermoplastic polymer matrices as Poly-EtherEtherKetone (PEEK) for example, are increasingly being used in structural engineering due to their light weight coupled with good mechanical properties. In aeronautic industry, the adhesive bonding of these composites is often required. However, their low surface energy motivates the development of robust and reliable surface activation treatments aiming at increasing the surface reactivity before painting. For this reason, we have used an atmospheric pressure plasma torch developed by AcXys Technologies(r). It is a remote plasma, well known to be an effective process to improve surface reactivity without deterioration of the bulk matrix properties. This easily implementable technology attracts many industries looking for a cost-effective and eco-friendly surface activation process. The aim of this work is to contribute to the understanding of plasma activation mechanisms leading to a greater and a more durable adhesion between PEEK matrix and an industrial painting. This study provides some insight into the effects of process parameters (device power, distance between nozzle and substrate, etc) on adhesion improvement. Mechanisms which are attributed to it are investigated by means of three point bending and crosscut adhesion standard tests. Results are discussed with respect to surface properties characterized by wettability measurements including acid-base approach, X-ray Photoelectrons Spectroscopy and Atomic Force Microscopy. In order to facilitate industrialization of atmospheric pressure remote plasma as surface activation technique, this study proposes a new approach aiming at allowing a better and more equitable comparison between atmospheric pressure plasma processes. This comparison is made through the "plasma dose" expression, similar to the one commonly used in Corona process. It is applicable for one plasma gas and accounts for both received energy and interaction time of the post-discharge with the surface. Mechanisms assigned to improvement of adhesion will be more appreciated and their characterization will contribute to a greater definition of industrial surface preparation range by remote plasma
Le, Delliou Pierre. "Étude des décharges électriques impulsionnelles à pression atmosphérique dans les milieux poreux et/ou alvéolaires". Phd thesis, Université Paris Sud - Paris XI, 2014. http://tel.archives-ouvertes.fr/tel-01062681.
Texto completoLimam, Soukayna. "La bio décontamination de surface par plasma froid : Contribution par l’étude de procédés de traitement de surface à pression atmosphérique". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC106.
Texto completoNon thermal plasma technologies have recently been receiving attention as an alternative technology for surface decontamination of thermally sensitive medical materials. This work focuses on two atmospheric pressure discharges. Bacteria exposure (contaminated samples with Escherichia coli and Bacillus stearothermophilus ) and spectroscopic measurements were made simultaneously
Bafoil, Maxime. "Stimulation de la germination des graines et de la croissance des plantes par plasmas froids à la pression atmosphérique". Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30208.
Texto completoThis work is part of the convergence of the fields of plasma physics and plant biology. The objective of this thesis is to contribute answers to the mechanisms involved in the effects of cold plasmas at atmospheric pressure on the germination and development of plants. The plant model in plant biology Arabidopsis thaliana is used; by considering the reference genotype Col-0 and several of its mutants (gl2 and gpat5) in order to better highlight the effect of plasma, in particular on osmotic and saline stresses. For the direct treatment of seeds to promote germination, air plasmas are used. Indirect treatment for growth stimulation uses plasma-activated water (PAW) thanks to helium plasma jets. The results show a positive effect of the plasma treatment of air generated by a dielectric barrier discharge device on a floating electrode (FE-DBD) and also a corona device in ambient air. These direct treatments allow an increase in the germination rate but above all an increase in the speed of germination. Analysis of the seed permeability revealed a change in the seed surface due to a physical effect of the plasma on the surface. Analysis of the surface residues shows a change in lipid composition. This being strongly correlated with germination; these results allow the identification of an understanding track of the effects of plasmas on the germination of seeds. In a second part, the indirect treatment of plants with PAW has the effect of increasing the growth rate. The plasma creating a certain number of reactive species of oxygen and nitrogen (in particular nitrates and nitrites) acts as a fertilizer stimulating the growth of plants
Pavy, Allan. "Mécanismes cellulaires adaptatifs du microenvironnement tumoral exposé au plasma froid - Application au traitement du cholangiocarcinome". Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS267.
Texto completoCholangiocarcinoma (CCA) is a cancer with a poor prognosis and limited therapeutic options. Surgical resection is the only curative option available, but it is applicable to only a small number of patients and offers relatively low survival rates (5-year survival of 30%) due to the typically late diagnosis of this cancer. Palliative therapies, based on chemotherapy and immunotherapy, are generally ineffective, mainly because of the desmoplastic nature of CCA, which limits the entry of drugs into the tumor site. With an increasing incidence and accounting for 2% of global cancer mortality, it is crucial to develop new therapies, including local treatments targeting tumor cells and their microenvironment, for the treatment of this cancer. It is in this context that enthusiasm for the use of cold atmospheric plasma (CAP) in the treatment of CCA has emerged. Considered the fourth state of matter and generated by the partial ionization of a gas at low temperature, CAP has demonstrated promising antitumor effects in various preclinical cancer models over the past fifteen years. It is indeed capable of producing reactive oxygen and nitrogen species (RONS). A close collaboration between the Saint-Antoine Research Center (CRSA) and the Plasma Physics Laboratory (LPP) has highlighted significant antitumor effects in an immunodeficient murine model of CCA, as well as significant remodeling of the tumor stroma, a crucial element in tumor progression. Since then, a CAP device adapted for insertion into a duodenoscope has been developed, with the aim of enabling in situ treatment of CCA tumors via endoscopy in the future. The objective of this thesis was to explore the antitumor effects of this new plasma source on in vitro and in vivo models of CCA, distinguishing the direct effects of plasma on tumor cells from indirect effects on tumorigenesis, mediated by phenotypic modifications of stromal cells, including cancer-associated fibroblasts (CAFs) and tumor endothelial cells (TECs). After demonstrating the technical feasibility and biological applicability of this endoscopic source, it was observed that the oxidative stress induced by CAP altered the activation state and migratory phenotype of CAFs, while affecting the viability and angiogenic profile of TECs. The use of three-dimensional spheroid models also revealed immunogenic signatures triggered by cold plasma treatment. Indeed, it was proven in vivo, through prophylactic vaccination, that CAP could induce immunogenic cell death (ICD) of tumor cells, promoting the recruitment of immune cells to the tumor site. Preliminary results also showed that direct treatment of subcutaneous tumors slowed tumor growth while allowing the recruitment of antitumor immune cells. Finally, after elucidating the mechanisms of ICD in vitro, a new therapeutic approach combining CAP and vaccinations was proposed, demonstrating an antitumor effect accompanied by increased infiltration of immune cells. To make the use of CAP clinically accessible, tests on porcine models were conducted to verify the thermal and electrical safety of this endoscopic source, both for the patient and the clinician. Thus, CAP opens up promising new perspectives for the locoregional treatment of CCA, by modulating the immunogenicity of tumors and impacting their desmoplastic stroma
Actas de conferencias sobre el tema "Plasma froid atmosphérique"
Dubuc, A., P. Monsarrat, S. Laurencin-Dalicieux, F. Virard, J. P. Sarrette, N. Merbahi y S. Cousty. "Application du plasma atmosphérique froid en oncologie : une revue systématique". En 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206603018.
Texto completo