Literatura académica sobre el tema "Plant viruses Genetics"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Plant viruses Genetics".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Plant viruses Genetics"
Fraser, R. S. S. "The Genetics of Resistance to Plant Viruses". Annual Review of Phytopathology 28, n.º 1 (septiembre de 1990): 179–200. http://dx.doi.org/10.1146/annurev.py.28.090190.001143.
Texto completode Jager, C. P. "Plant resistance to viruses". Physiological and Molecular Plant Pathology 36, n.º 3 (marzo de 1990): 265–66. http://dx.doi.org/10.1016/0885-5765(90)90032-s.
Texto completoElena, Santiago F., Stéphanie Bedhomme, Purificación Carrasco, José M. Cuevas, Francisca de la Iglesia, Guillaume Lafforgue, Jasna Lalić, Àngels Pròsper, Nicolas Tromas y Mark P. Zwart. "The Evolutionary Genetics of Emerging Plant RNA Viruses". Molecular Plant-Microbe Interactions® 24, n.º 3 (marzo de 2011): 287–93. http://dx.doi.org/10.1094/mpmi-09-10-0214.
Texto completoRoossinck, Marilyn J. "Lifestyles of plant viruses". Philosophical Transactions of the Royal Society B: Biological Sciences 365, n.º 1548 (27 de junio de 2010): 1899–905. http://dx.doi.org/10.1098/rstb.2010.0057.
Texto completoAli, Zahir y Magdy M. Mahfouz. "CRISPR/Cas systems versus plant viruses: engineering plant immunity and beyond". Plant Physiology 186, n.º 4 (12 de mayo de 2021): 1770–85. http://dx.doi.org/10.1093/plphys/kiab220.
Texto completoMarwal, Avinash y Rajarshi Kumar Gaur. "Host Plant Strategies to Combat Against Viruses Effector Proteins". Current Genomics 21, n.º 6 (16 de septiembre de 2020): 401–10. http://dx.doi.org/10.2174/1389202921999200712135131.
Texto completoKeese, Paul y Adrian Gibbs. "Plant viruses: master explorers of evolutionary space". Current Opinion in Genetics & Development 3, n.º 6 (enero de 1993): 873–77. http://dx.doi.org/10.1016/0959-437x(93)90007-c.
Texto completoKasschau, Kristin D. y James C. Carrington. "A Counterdefensive Strategy of Plant Viruses". Cell 95, n.º 4 (noviembre de 1998): 461–70. http://dx.doi.org/10.1016/s0092-8674(00)81614-1.
Texto completoKridl, Jean C. y Robert M. Goodman. "Transcriptional regulatory sequences from plant viruses". BioEssays 4, n.º 1 (enero de 1986): 4–8. http://dx.doi.org/10.1002/bies.950040103.
Texto completoTHRESH, J. M. "The ecology of tropical plant viruses". Plant Pathology 40, n.º 3 (septiembre de 1991): 324–39. http://dx.doi.org/10.1111/j.1365-3059.1991.tb02386.x.
Texto completoTesis sobre el tema "Plant viruses Genetics"
Afsharifar, Alireza. "Characterisation of minor RNAs associated with plants infected with cucumber mosaic virus". Title page, table of contents and abstract only, 1997. http://web4.library.adelaide.edu.au/theses/09PH/09pha2584.pdf.
Texto completoSheldon, Candice Claire. "Hammerhead mediated self-cleavage of plant pathogenic RNAs /". Title page, contents and summary only, 1992. http://web4.library.adelaide.edu.au/theses/09PH/09phs544.pdf.
Texto completoZambrano, Mendoza Jose Luis. "Genetic Architecture of Resistance to Phylogenetically Diverse Viruses in Maize". The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1373285155.
Texto completoTorok, Valeria Anna. "Biological and molecular variation among isolates of pea seed borne mosaic virus". Title page, contents and abstract only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09pht686.pdf.
Texto completoMalan, Stefanie. "Real time PCR as a versatile tool for virus detection and transgenic plant analysis". Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/1921.
Texto completoENGLISH ABSTRACT: South Africa is regarded as one of the top wine producing countries in the world. One of the threats to the sustainability of the wine industry is viral diseases of which Grapevine leafroll-associated virus 3 (GLRaV-3) and Grapevine virus A (GVA) are considered to be the most important and wide spread. Scion material is regularly tested for viruses; however scion material is often grafted onto rootstocks that have questionable phytosanitary status. Virus detection in rootstocks is challenging due to low and varying titres, but is imperative as a viral control mechanism. An additional viral control mechanism is the use of transgenic grapevine material which offers resistance to grapevine infection. The objective of this project was to establish a detection system using real time PCR (qPCR) techniques, to accurately and routinely detect GLRaV-3 and GVA in rootstock propagation material. qPCR would furthermore be used to perform molecular characterisation of transgenic plants containing a GLRaV-3 antiviral ΔHSP-Mut construct. A severely infected vineyard (Nietvoorbij farm) in the Stellenbosch area was screened throughout the grapevine growing season to investigate virus prevalence throughout the season and to determine the optimal time for sensitive virus detection. A large scale screening of nursery propagation material for GLRaV-3 infection was also conducted. The qRT-PCR results were compared to DAS-ELISA results to compare the efficacy and sensitivity of the two techniques. For the severely infected vineyard, the ability to detect GLRaV-3 increased as the season progressed towards winter. qRT-PCR was more sensitive and accurate in detecting GLRaV-3 than DASELISA, as the latter technique delivered numerous false positive results later in the season. The best time to screen for GLRaV-3 in the Western Cape region was from the end of July to September. For the nursery screenings, our qRT-PCR results were compared to the results of the DAS-ELISA performed by the specific nurseries. No GLRaV-3 infection was detected in the specific samples received from the two different nurseries. The results for all the samples correlated between the two techniques. This confirms that the propagation material of these nurseries has a healthy phytosanitary status with regards to GLRaV-3. However, the detection of GVA in the severely infected vineyard yielded inconsistent results. Detection ability fluctuated throughout the season and no specific trend in seasonal variation and virus titre fluctuation could be established. The highest percentage of GVA infected samples were detected during September, April and the end of July. Previously published universal primers were used for the detection of GVA, but further investigation indicated that they might not be suitable for sensitive detection of specific GVA variants present in South Africa. Vitis vinifera was transformed with a GLRaV-3 antiviral construct, ΔHSP-Mut. SYBR Green Real time PCR (qPCR) and qRT-PCR were utilised as alternative methods for molecular characterisation of transgenic plants. The qPCR and Southern blot results correlated for 76.5% of the samples. This illustrated the ability of qPCR to accurately estimate transgene copy numbers. Various samples were identified during qRT-PCR amplification that exhibited high mRNA expression levels of the transgene. These samples are ideal for further viral resistance studies. This study illustrated that the versatility of real time PCR renders it a valuable tool for accurate virus detection as well as copy number determination.
AFRIKAANSE OPSOMMING: Suid Afrika word geag as een van die top wyn produserende lande ter wereld. Die volhoubaarheid van die wynbedryf word onder andere bedreig deur virus-infeksies. Grapevine leafroll associated virus 3 (GLRaV-3) en Grapevine virus A (GVA) is van die mees belangrike virusse wat siektes veroorsaak in Suid-Afrikaanse wingerde. Wingerd bo-stok materiaal word gereeld getoets vir hierdie virusse, maar hierdie materiaal word meestal geënt op onderstokmateriaal waarvan die virus status onbekend is. Virus opsporing in onderstokke word egter gekompliseer deur baie lae en variërende virus konsentrasies, maar opsporing in voortplantingsmateriaal is ‘n noodsaaklike beheermeganisme vir virus-infeksie. Die doel van die projek was om ‘n opsporingsisteem te ontwikkel via kwantitatiewe PCR (qPCR) tegnieke vir akkurate en gereelde toetsing van GLRaV-3 en GVA in onderstokmateriaal. qPCR sal ook verder gebruik word vir molekulêre karakterisering van transgeniese plante wat ‘n GLRaV-3 antivirale ΔHSP-Mut konstruk bevat. ‘n Hoogs geïnfekteerde wingerd was regdeur die seisoen getoets om seisoenale fluktuasies in viruskonsentrasie te ondersoek en om die optimale tydstip vir sensitiewe virus opsporing te bepaal. ‘n Grootskaalse toetsing van kwekery voortplantingsmateriaal vir GLRaV-3 infeksie was ook uitgevoer. Die qRT-PCR resultate is met die DAS-ELISA resultate vergelyk om die effektiwiteit en sensitiwiteit van die twee tegnieke te vergelyk. Vir die hoogs geïnfekteerde wingerd het die GLRaV-3 opsporing toegeneem met die verloop van die seisoen tot en met winter. qRT-PCR was meer sensitief en akkuraat as DAS-ELISA in die opsporing van GLRaV-3, weens verskeie vals positiewe resultate wat later in die seisoen deur die laasgenoemde tegniek verkry is. Die beste tyd om vir GLRaV-3 te toets is vanaf einde Julie tot September. Tydens die kwekery toetsings was qRT-PCR resultate met die DAS-ELISA resultate van die spesifieke kwekerye vergelyk. Geen GLRaV-3 infeksie was waargeneem in die spesifieke monsters wat vanaf die kwekerye ontvang is nie. Die resultate van die twee tegnieke het ooreengestem vir al die monsters wat v getoets is. Dit het bevestig dat die voortplantingsmateriaal van hierdie kwekerye gesonde fitosanitêre status met betrekking tot GLRaV-3 gehad het. Die opsporing van GVA in die geïnfekteerde wingerd het egter wisselvallige resultate gelewer. Opsporing van die virus het ook regdeur die seisoen gefluktueer en geen spesifieke neiging in seisoenale opsporingsvermoë kon gemaak word nie. Die hoogste persentasie GVA geïnfekteerde monsters was waargeneem tydens September, April en die einde van Julie. Voorheen gepubliseerde universele inleiers was gebruik vir die opsporing van GVA, maar verdere ondersoeke het getoon dat hierdie inleiers nie noodwendig geskik is vir sensitiewe opsporing van GVA variante wat teenwoordig is in Suid-Afrika nie. Vitis vinifera was getransformeer met ‘n GLRaV-3 antivirale konstruct, ΔHSP-Mut. SYBR Green Real time PCR (qPCR) en qRT-PCR was ingespan as alternatiewe metodes vir molekulêre karaterisering van transgeniese plante. Die qPCR en Southern-klad resultate het ooreengestem vir 76.5% van die monsters. Dit illustreer die vermoë van qPCR om akkurate kopie-getalle van transgene te bepaal. Verskeie plante is geïdentifiseer tydens qRT-PCR amplifisering wat hoë vlakke van transgeen mRNA uitdrukking getoon het. Hierdie monsters is ideaal vir verdere virus weerstandbiedendheids studies. Hierdie studie het die veelsydigheid van real time PCR bewys en getoon dat dit ‘n kosbare tegniek is vir akkurate virus opsporing sowel as kopie-getal bepaling.
Rathjen, John Paul. "Aspects of luteovirus molecular biology in relation to the interaction between BYDV-PAV and the Yd2 resistance gene of barley /". Title page, contents and summary only, 1995. http://web4.library.adelaide.edu.au/theses/09PH/09phr2342.pdf.
Texto completoLi, Sizhun. "SnRK1-eIF4E Interaction in Translational Control and Antiviral Defense". The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1417694518.
Texto completoMaree, H. J. (Hans Jacob). "The expression of Dianthin 30, a ribosome inactivating protein". Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53633.
Texto completoENGLISH ABSTRACT: Ribosome inactivating proteins (RIPs) are currently classified as rRNA N-glycosidases, but also have polynucleotide: adenosine glycosidase activity. RIPs are believed to have anti-viral and anti-fungal properties, but the exact mechanism of these proteins still need to be elucidated.The mechanism of resistance however, appears to be independent of the pathogen. For resistance the RIP terminates virus infected plant cells and stops the reproduction and spread of the virus. Transgenic plants containing RIPs should thus be resistant to a wide range of viruses. The ultimate goal of the larger project of which this forms part is the development of virus resistant plants. To monitor the expression of a RIP in a transgenic plant a detection method had to be developed. Antibody detection of the RIP was decided upon as the most cost effective method. The RIP, Dianthin 30 from Dianthus caryophyllus (carnation), was used and expressed in bacterial and insect expression systems. The bacterial expression experiments were done using the pET expression system in BL21(DE3)pLysS cells. The expression in this system yielded recombinant protein at a very low concentration. Expression experiments were also performed in insect tissue culture with the baculovirus vector BAC-TO-BAC™.With this system the expression was also too low to be used for the production of antibodies. A Dianthin 30 specific peptide was then designed and then produced by Bio-Synthesis. This peptide was then used to raise antibodies to detect Dianthin 30. These antibodies were tested on Dianthus caryophyllus proteins. To establish if this detection method was effective to monitor the expression in plants, tobacco plants were transformed with Agrobacterium tumefaciens containing Dianthin 30 in the pART27 plant expression vector. The putative transformed plants were analysed with peR and Southern blots.
AFRIKAANSE OPSOMMING: Tans word Ribosomale-inaktiverende proteïene (RIPs) geklassifiseer as rRNA N-glikosidase wat ook polinukleotied: adenosien glikosidase aktiwiteit bevat. Daar word geglo dat RIPs anti-virale en anti-fungus eienskappe bevat, maar die meganisme van beskerming word nog nie ten volle verstaan nie. Dit is wel bewys dat die meganisme van weerstand onafhanklik is van die patogeen. Virus geinfekteerde plantselle word deur die RIP gedood om die voortplanting en verspreiding te bekamp en sodoende word weerstand bewerkstellig. Transgeniese plante wat dan 'n RIP bevat sal dus weerstandbiedend wees teen 'n wye spektrum virusse. Die hoofdoel van die breër projek, waarvan die projek deel uitmaak: is die ontwikkeling van virusbestande plante. Om die uitdrukking van die RIP in die transgeniese plante te kontroleer, moes 'n deteksie metode ontwikkel word. Die mees koste effektiewe deteksie metode is met teenliggame. Die RIP, Dianthin 30 from Dianthus caryophyllus (angelier) was gebruik vir uitdrukking in bakteriele- en insekweefselkultuur. Die bakteriele uitdrukkingseksperimente was gedoen met die pET uitdrukkings sisteem III BL21(DE3)pLysS selle. Die uitdrukking in die sisteem het slegs rekombinante proteïene gelewer in uiters lae konsentrasies. Uitdrukkingseksperimente was ook gedoen in insekweefselkultuur met die baculovirus vektor BAC-To- BACTM. Met die sisteem was die uitdrukking ook veels te laag om bruikbaar te wees vir die produksie van teenliggame. Daar is toe 'n peptied ontwerp wat Dianthin 30 kan verteenwoordig vir die produksie van teenliggame. Die teenliggame is getoets teen Dianthus caryophyllus proteïene. Om vas te stel of die deteksiemetode wel die uitdrukking van Dianthin 30 sal kan monitor, is tabak ook getransformeer met Dianthin 30. Die transformasies is gedoen met die hulp van Agrobacterium tumefaciens en die pART27 plant uitdrukkings vektor. Die plante is getoets met die polimerase ketting reaksie en Southern klad tegnieke.
Wahyuni, Wiwiek Sri. "Variation among cucumber mosaic virus (CMV) isolates and their interaction with plants". Title page, contents and summary only, 1992. http://web4.library.adelaide.edu.au/theses/09PH/09phw137.pdf.
Texto completoVaitkunas, Katrina Emilee. "The genetics of TCV resistance". Link to electronic thesis, 2003. http://www.wpi.edu/Pubs/ETD/Available/etd-0428103-102720.
Texto completoLibros sobre el tema "Plant viruses Genetics"
Hull, Roger. Comparative plant virology: Fundamentals of plant virology. 2a ed. Burlington, MA: Elsevier Academic Press, 2009.
Buscar texto completoP, Pirone T., Shaw John G y Symposium on Viral Genes and Plant Pathogenesis (1989 : Lexington, Ky.), eds. Viral genes and plant pathogenesis. New York: Springer-Verlag, 1990.
Buscar texto completoUyeda, Ichiro y Chikara Masuta. Plant virology protocols: New approaches to detect viruses and host responses. New York: Humana Press, 2015.
Buscar texto completoA, Wilson T. Michael y Davies Jeffrey W, eds. Genetic engineering with plant viruses. Boca Raton: CRC Press, 1992.
Buscar texto completoR, Crute I., Holub E. B, Burdon J. J y British Society for Plant Pathology., eds. The gene-for-gene relationship in plant-parasite interactions. Wallington, UK: CAB International, 1997.
Buscar texto completoWarmbrodt, Robert D. Biotechnology, plant protection from agents other than viruses: January 1988 - March 1991. Beltsville, Md: National Agricultural Library, 1991.
Buscar texto completoM, Kyle Molly, ed. Resistance to viral diseases of vegetables: Genetics & breeding. Portland, Or: Timber Press, 1993.
Buscar texto completoPonce, Claudia Ortega. Relaciones sociales y de genes: El primer vegetal transgénico mexicano. México, D.F: Universidad Autónoma del Estado de México, Facultad de Ciencias Políticas y Sociales, 2010.
Buscar texto completoThompson, Winston M. O. The Whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) Interaction with Geminivirus-Infected Host Plants: Bemisia tabaci, Host Plants and Geminiviruses. Dordrecht: Springer Science+Business Media B.V., 2011.
Buscar texto completoKing, Robert C. Handbook of Genetics: Plants, Plant Viruses, and Protists. Springer, 2013.
Buscar texto completoCapítulos de libros sobre el tema "Plant viruses Genetics"
van Vloten-Doting, L. "Virus Genetics". En The Plant Viruses, 117–61. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-4937-2_5.
Texto completoFraser, R. S. S. "Genetics of Plant Resistance to Viruses". En Ciba Foundation Symposium 133 - Plant Resistance to Virus, 6–22. Chichester, UK: John Wiley & Sons, Ltd., 2007. http://dx.doi.org/10.1002/9780470513569.ch2.
Texto completoFraser, R. S. S. "Genetics of Host Resistance to Viruses and of Virulence". En Mechanisms of Resistance to Plant Diseases, 62–79. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5145-7_4.
Texto completoRicci, Angela, Silvia Sabbadini, Laura Miozzi, Bruno Mezzetti y Emanuela Noris. "Host-induced gene silencing and spray-induced gene silencing for crop protection against viruses." En RNAi for plant improvement and protection, 72–85. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789248890.0008.
Texto completoRicci, Angela, Silvia Sabbadini, Laura Miozzi, Bruno Mezzetti y Emanuela Noris. "Host-induced gene silencing and spray-induced gene silencing for crop protection against viruses." En RNAi for plant improvement and protection, 72–85. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789248890.0072.
Texto completoFraenkel-Conrat, H. "Viruses". En Genetic Flux in Plants, 3–10. Vienna: Springer Vienna, 1985. http://dx.doi.org/10.1007/978-3-7091-8765-4_1.
Texto completoGarcía-Arenal, F., A. Fraile y J. M. Malpica. "Genetic Variability and Evolution". En Molecular Biology of Plant Viruses, 143–59. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5063-1_6.
Texto completoWhitham, Steven A. y M. R. Hajimorad. "Plant Genetic Resistance to Viruses". En Current Research Topics in Plant Virology, 87–111. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32919-2_4.
Texto completoAli, Akhtar y Marilyn J. Roossinck. "Genetic Bottlenecks". En Plant Virus Evolution, 123–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75763-4_7.
Texto completoVerma, Rakesh Kumar, Ritesh Mishra y Rajarshi Kumar Gaur. "Potato Virus Y Genetic Variability: A Review". En Plant Viruses: Evolution and Management, 205–14. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1406-2_12.
Texto completoActas de conferencias sobre el tema "Plant viruses Genetics"
"Bacillus bacteria in the resistance of potato plants to viruses". En Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-035.
Texto completo"Endophytic bacteria of the Bacillus induce resistance of potato plants to viruses". En Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-029.
Texto completo"Efficient eradication of potato viruses by induction of posttranscriptional gene silencing in transgenic potato". En Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-009.
Texto completo"VirHunter: a deep learning-based method for detection of novel viruses in plant sequencing data". En Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-196.
Texto completoMarii, Liliana, Larisa Andronic, Svetlana Smerea y Natalia Balasova. "Evaluarea rolului genotipului în răspunsul antioxidativ la tomatele infectate cu virusuri". En VIIth International Scientific Conference “Genetics, Physiology and Plant Breeding”. Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2021. http://dx.doi.org/10.53040/gppb7.2021.41.
Texto completo"Potential of ribonuclease-sinthesizing plant growth promoting rhizobacteria in plant defence against viruses". En Current Challenges in Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences Novosibirsk State University, 2019. http://dx.doi.org/10.18699/icg-plantgen2019-24.
Texto completoСалтанович, Татьяна, Людмила Анточ y А. Дончилэ. "Особенности мужского гаметофита томата в условиях вирусного патогенеза и водного дефицита". En VIIth International Scientific Conference “Genetics, Physiology and Plant Breeding”. Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2021. http://dx.doi.org/10.53040/gppb7.2021.25.
Texto completo"Development of a new method for eradication of viruses by induction of posttranscriptional gene silencing in transgenic potato plants". En Current Challenges in Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences Novosibirsk State University, 2019. http://dx.doi.org/10.18699/icg-plantgen2019-46.
Texto completo"Drought resistance in some Prunus persica (L.) Batsch cultivars damaged with Plum Pox Virus". En Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-034.
Texto completo"Plant virus genome studies using novel databases and bioinformatics tools for text compression and entropy". En Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-080.
Texto completoInformes sobre el tema "Plant viruses Genetics"
Dawson, William O. y Moshe Bar-Joseph. Creating an Ally from an Adversary: Genetic Manipulation of Citrus Tristeza. United States Department of Agriculture, enero de 2004. http://dx.doi.org/10.32747/2004.7586540.bard.
Texto completoMawassi, Munir y Valerian V. Dolja. Role of the viral AlkB homologs in RNA repair. United States Department of Agriculture, junio de 2014. http://dx.doi.org/10.32747/2014.7594396.bard.
Texto completoBar-Joseph, Moshe, William O. Dawson y Munir Mawassi. Role of Defective RNAs in Citrus Tristeza Virus Diseases. United States Department of Agriculture, septiembre de 2000. http://dx.doi.org/10.32747/2000.7575279.bard.
Texto completoGera, Abed, Abed Watad, P. Ueng, Hei-Ti Hsu, Kathryn Kamo, Peter Ueng y A. Lipsky. Genetic Transformation of Flowering Bulb Crops for Virus Resistance. United States Department of Agriculture, enero de 2001. http://dx.doi.org/10.32747/2001.7575293.bard.
Texto completoUllman, Diane, James Moyer, Benjamin Raccah, Abed Gera, Meir Klein y Jacob Cohen. Tospoviruses Infecting Bulb Crops: Evolution, Diversity, Vector Specificity and Control. United States Department of Agriculture, septiembre de 2002. http://dx.doi.org/10.32747/2002.7695847.bard.
Texto completoDolja, Valerian V., Amit Gal-On y Victor Gaba. Suppression of Potyvirus Infection by a Closterovirus Protein. United States Department of Agriculture, marzo de 2002. http://dx.doi.org/10.32747/2002.7580682.bard.
Texto completoDawson, William O., Moshe Bar-Joseph, Charles L. Niblett, Ron Gafny, Richard F. Lee y Munir Mawassi. Citrus Tristeza Virus: Molecular Approaches to Cross Protection. United States Department of Agriculture, enero de 1994. http://dx.doi.org/10.32747/1994.7570551.bard.
Texto completoLevin, Ilan, John Thomas, Moshe Lapidot, Desmond McGrath y Denis Persley. Resistance to Tomato yellow leaf curl virus (TYLCV) in tomato: molecular mapping and introgression of resistance to Australian genotypes. United States Department of Agriculture, octubre de 2010. http://dx.doi.org/10.32747/2010.7613888.bard.
Texto completoMawassi, Munir, Baozhong Meng y Lorne Stobbs. Development of Virus Induced Gene Silencing Tools for Functional Genomics in Grapevine. United States Department of Agriculture, julio de 2013. http://dx.doi.org/10.32747/2013.7613887.bard.
Texto completoAvni, Adi y Kirankumar S. Mysore. Functional Genomics Approach to Identify Signaling Components Involved in Defense Responses Induced by the Ethylene Inducing Xyalanase Elicitor. United States Department of Agriculture, diciembre de 2009. http://dx.doi.org/10.32747/2009.7697100.bard.
Texto completo