Siga este enlace para ver otros tipos de publicaciones sobre el tema: Plant-soil relationships.

Artículos de revistas sobre el tema "Plant-soil relationships"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Plant-soil relationships".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

&NA;. "Soil-Plant Relationships." Soil Science 146, no. 3 (September 1988): 208. http://dx.doi.org/10.1097/00010694-198809000-00010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Lemoigne, Yves. "Soil-plant relationships, an ecological approach." Geobios 21, no. 2 (January 1988): 260. http://dx.doi.org/10.1016/s0016-6995(88)80024-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Lathwell, D. J., and T. L. Grove. "Soil-Plant Relationships in the Tropics." Annual Review of Ecology and Systematics 17, no. 1 (November 1986): 1–16. http://dx.doi.org/10.1146/annurev.es.17.110186.000245.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Keymer, Daniel P., and Richard A. Lankau. "Disruption of plant-soil-microbial relationships influences plant growth." Journal of Ecology 105, no. 3 (January 16, 2017): 816–27. http://dx.doi.org/10.1111/1365-2745.12716.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Marrs, R. H., and D. W. Jeffrey. "Soil-Plant Relationships: An Ecological Approach. (1987)." Journal of Applied Ecology 25, no. 1 (April 1988): 367. http://dx.doi.org/10.2307/2403637.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Golley, Frank B. "Chemical plant-soil relationships in tropical forests." Journal of Tropical Ecology 2, no. 3 (August 1986): 219–29. http://dx.doi.org/10.1017/s0266467400000845.

Texto completo
Resumen
ABSTRACTPlant and soil samples collected from four tropical forest areas were used to examine the correlation between the chemical abundances in soil and vegetation. On fertile soils in Panama and Colombia soil concentrations of copper, manganese, cobalt and zinc were correlated with plant concentrations. Calcium, caesium, iron, lead, magnesium, phosphorus, potassium, sodium and strontium-concentrations were not correlated. Factor analysis of plant chemistry at nine sites showed very little commonality between sites, even of vegetation belonging to the same plant association. A copper, mangane
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Pastor, John. "Soil-Plant Relationships: A Gordian Knot Remains Tied." Ecology 69, no. 3 (June 1988): 874. http://dx.doi.org/10.2307/1941038.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Xi, Nianxun, Peter B. Adler, Dongxia Chen, Hangyu Wu, Jane A. Catford, Peter M. Bodegom, Michael Bahn, Kerri M. Crawford, and Chengjin Chu. "Relationships between plant–soil feedbacks and functional traits." Journal of Ecology 109, no. 9 (July 12, 2021): 3411–23. http://dx.doi.org/10.1111/1365-2745.13731.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Siegel, S. M., and B. Z. Siegel. "Temperature determinants of plant-soil-air mercury relationships." Water, Air, and Soil Pollution 40, no. 3-4 (August 1988): 443–48. http://dx.doi.org/10.1007/bf00163747.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Shand, C. A. "Nutrient Elements in Grassland: Soil-Plant-Animal Relationships." Grass and Forage Science 56, no. 2 (June 29, 2001): 200. http://dx.doi.org/10.1046/j.1365-2494.2001.00255.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Shiel, R. S. "Nutrient Elements in Grassland: Soil-Plant-Animal Relationships." European Journal of Soil Science 52, no. 3 (September 2001): 523–24. http://dx.doi.org/10.1046/j.1365-2389.2001.00418-5.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Lebzien, Peter. "Nutrient Elements in Grassland: Soil–Plant–Animal Relationships." Animal Feed Science and Technology 89, no. 3-4 (February 2001): 209. http://dx.doi.org/10.1016/s0377-8401(01)00192-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Andersen, C. P., and P. T. Rygiewicz. "Understanding plant-soil relationships using controlled environment facilities." Advances in Space Research 24, no. 3 (January 1999): 309–18. http://dx.doi.org/10.1016/s0273-1177(99)00484-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Oenema, Oene. "Nutrient Elements in Grassland; Soil–Plant–Animal Relationships." Geoderma 104, no. 1-2 (November 2001): 177–79. http://dx.doi.org/10.1016/s0016-7061(01)00052-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Bittman, Shabtai. "Nutrient Elements in Grassland: Soil–plant–animal relationships." Soil and Tillage Research 63, no. 1-2 (December 2001): 85–87. http://dx.doi.org/10.1016/s0167-1987(01)00233-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Clarke, Mike J., and Ron H. Allen. "Peatland soil-plant relationships in the New Forest." Aquatic Botany 25 (January 1986): 167–77. http://dx.doi.org/10.1016/0304-3770(86)90052-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

McNeill, Ann. "Nutrient Elements in Grassland: Soil–Plant–Animal Relationships." Agriculture, Ecosystems & Environment 86, no. 3 (September 2001): 323–24. http://dx.doi.org/10.1016/s0167-8809(01)00203-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Marion, G. M., S. J. Hastings, S. F. Oberbauer, and W. C. Oechel. "Soil-plant element relationships in a tundra ecosystem." Ecography 12, no. 3 (October 1989): 296–303. http://dx.doi.org/10.1111/j.1600-0587.1989.tb00849.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Dell'Abate, M. T., A. Benedetti, P. Nardi, E. Di Bartolomeo, and G. Fabrizio. "SOIL-PLANT RELATIONSHIPS IN THE CIMINI-SABATINI HAZELNUT DISTRICT: PLANT NUTRITION AND SOIL FERTILITY STATUS." Acta Horticulturae, no. 845 (October 2009): 391–98. http://dx.doi.org/10.17660/actahortic.2009.845.61.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Thakur, Madhav P., Wim H. van der Putten, Rutger A. Wilschut, G. F. (Ciska) Veen, Paul Kardol, Jasper van Ruijven, Eric Allan, Christiane Roscher, Mark van Kleunen, and T. Martijn Bezemer. "Plant–Soil Feedbacks and Temporal Dynamics of Plant Diversity–Productivity Relationships." Trends in Ecology & Evolution 36, no. 7 (July 2021): 651–61. http://dx.doi.org/10.1016/j.tree.2021.03.011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Anacker, B. L., T. R. Seastedt, T. M. Halward, and A. L. Lezberg. "Soil carbon and plant richness relationships differ among grassland types, disturbance history and plant functional groups." Oecologia 196, no. 4 (July 25, 2021): 1153–66. http://dx.doi.org/10.1007/s00442-021-04992-x.

Texto completo
Resumen
AbstractUnderstanding the relationship of soil carbon storage and species diversity in grasslands can provide insights into managing these ecosystems. We studied relationships among soil C and plant species richness within ~ 9700 ha of grasslands in Colorado, US. Using 141 grassland transects, we tested how soil C was related to plant species richness, grassland type, soil texture, and prairie dog presence. Soil C was significantly, positively related to plant species richness, while native perennial graminoid species richness exhibited an even stronger positive relationship. However, the rela
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Khabir, Md Imam ul, Daphne Topps, Jannatul Ferdous Jhumur, Anthony Adesemoye, Jasmine Brown, Antoine Newman, Boakai K. Robertson, Javed Iqbal, and Muhammad Saleem. "Linking Rhizosphere Soil Aggregates with Belowground and Aboveground Plant Traits." Ecologies 4, no. 1 (February 8, 2023): 74–87. http://dx.doi.org/10.3390/ecologies4010007.

Texto completo
Resumen
Rhizosphere soil ecosystems are represented by the diversity of different soil aggregate-size classes, such as large macroaggregates, small macroaggregates, mesoaggregates, and microaggregates. Though these aggregate-size classes represent distinct biological, chemical, and physical properties, little is known about their dynamics and relationships with belowground and aboveground plant traits. In this study, we examined the relationships of various soil aggregate-size classes and their organic carbon contents with many aboveground and belowground soybean plant traits. Our study revealed sever
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Rust, Will, Madison Sotkewicz, Zhaoxing Li, Theresa Mercer, and Alice S. Johnston. "Soil–Plant–Pollinator Relationships in Urban Grass and Meadow Habitats: Competing Benefits and Demands of Tall Flowering Plants on Soil and Pollinator Diversity." Diversity 16, no. 6 (June 19, 2024): 354. http://dx.doi.org/10.3390/d16060354.

Texto completo
Resumen
Urban green spaces can be important habitats for soil, plant, and pollinator diversity and the complementary ecosystem functions they confer. Most studies tend to investigate the relationships between plant diversity with either soil or pollinator diversity, but establishing their relationship across habitat types could be important for optimising ecosystem service provision via alternative management (for instance, urban meadows in place of short amenity grass). Here, we investigate soil–plant–pollinator relationships across urban grass and meadow habitats through a range of measured biodiver
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Liang, Minxia, Xubing Liu, Ingrid M. Parker, David Johnson, Yi Zheng, Shan Luo, Gregory S. Gilbert, and Shixiao Yu. "Soil microbes drive phylogenetic diversity-productivity relationships in a subtropical forest." Science Advances 5, no. 10 (October 2019): eaax5088. http://dx.doi.org/10.1126/sciadv.aax5088.

Texto completo
Resumen
The relationship between plant diversity and productivity and the mechanisms underpinning that relationship remain poorly resolved in species-rich forests. We combined extensive field observations and experimental manipulations in a subtropical forest to test how species richness (SR) and phylogenetic diversity (PD) interact with putative root-associated pathogens and how these interactions mediate diversity-productivity relationships. We show that (i) both SR and PD were positively correlated with biomass for both adult trees and seedlings across multiple spatial scales, but productivity was
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Gleason, S. M., K. C. Ewel, and N. Hue. "Soil redox conditions and plant–soil relationships in a micronesian mangrove forest." Estuarine, Coastal and Shelf Science 56, no. 5-6 (April 2003): 1065–74. http://dx.doi.org/10.1016/s0272-7714(02)00307-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Rao, DVK Nageswara, Thomas Eappen, A. Ulaganathan, GC Satisha, and Nushanair. "Influence of landscape attributes on soil-plant inter-relationships." Current Advances in Agricultural Sciences(An International Journal) 6, no. 2 (2014): 142. http://dx.doi.org/10.5958/2394-4471.2014.00007.0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Edwards, Clive A. "Soil-Plant Relationships: An Ecological Approach. David W. Jeffrey." Quarterly Review of Biology 64, no. 4 (December 1989): 499–500. http://dx.doi.org/10.1086/416504.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Abella, Scott R., Lindsay P. Chiquoine, and Cheryl H. Vanier. "Characterizing soil seed banks and relationships to plant communities." Plant Ecology 214, no. 5 (April 25, 2013): 703–15. http://dx.doi.org/10.1007/s11258-013-0200-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Foxx, Alicia J., and Siobhán T. Wojcik. "Plasticity in response to soil texture affects the relationships between a shoot and root trait and responses vary by population." Folia Oecologica 48, no. 2 (July 1, 2021): 199–204. http://dx.doi.org/10.2478/foecol-2021-0020.

Texto completo
Resumen
Abstract The relationships between shoot and root traits can inform plant selection for restoration, forestry, and agriculture and help to identify relationships that inform plant productivity and enhance their performance. But the strength of coordination between above- and belowground morphological and physiological traits varies due to differences in edaphic properties and population variation. More assessments are needed to determine what conditions influence these relationships. So, we tested whether plant population and soil texture affect the relationship between shoot and root traits w
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Gökmen, Fatih, Veli Uygur, and Enise Sukuşu. "Investigation of Relationships Between Available Boron and Soil Properties." Romanian Agricultural Research 40 (2023): 385–93. http://dx.doi.org/10.59665/rar4036.

Texto completo
Resumen
Soil formation processes and cropping and management practices affect plant-available amounts of boron (B) in soils. Using Pearson's correlation and principal component analyses, this study investigated the relationships between soil properties and plant-available boron concentrations in 69 soil samples. In principal component analysis (PCA), 73.079% of the variance was explained with four components. Plant-available B in the soil was significantly correlated with phosphorus, potassium, pH, and electrical conductivity (EC), showing that phosphorus and potassium fertilizer producers would be ad
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Mundy, G. N., K. L. Greenwood, K. B. Kelly, S. M. Austin, and K. E. Dellow. "Improved soil and irrigation management for forage production 3. Plant - soil - water relationships." Australian Journal of Experimental Agriculture 46, no. 3 (2006): 327. http://dx.doi.org/10.1071/ea04097.

Texto completo
Resumen
A field experiment was conducted from January 2000 for 2.5 years, at the Department of Primary Industries, Kyabram, in northern Victoria. The experiment determined the effect of soil modification, with and without subsurface drainage, on the yield and water use of tall fescue (Festuca arundinacea), lucerne (Medicago sativa), phalaris (Phalaris aquatica) and perennial ryegrass (Lolium perenne) under 2 irrigation frequencies. The soil was a red-brown earth. The forages were spray irrigated from August to May when evaporation minus rainfall (E – R) reached 45–50 mm (frequent) or 90–100 mm (infreq
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Wu, Yu Ting, Jessica Gutknecht, Karin Nadrowski, Christian Geißler, Peter Kühn, Thomas Scholten, Sabine Both, et al. "Relationships Between Soil Microorganisms, Plant Communities, and Soil Characteristics in Chinese Subtropical Forests." Ecosystems 15, no. 4 (April 5, 2012): 624–36. http://dx.doi.org/10.1007/s10021-012-9533-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Trap, Jean, Patricia Mahafaka Ranoarisoa, Usman Irshad, and Claude Plassard. "Richness of Rhizosphere Organisms Affects Plant P Nutrition According to P Source and Mobility." Agriculture 11, no. 2 (February 16, 2021): 157. http://dx.doi.org/10.3390/agriculture11020157.

Texto completo
Resumen
Plants evolve complex interactions with diverse soil mutualist organisms to enhance P mobilization from the soil. These strategies are particularly important when P is poorly available. It is still unclear how the soil P source (e.g., mineral P versus recalcitrant organic P) and its mobility in the soil (high or low) affect soil mutualist biological (ectomycorrhizal fungi, bacteria and bacterial-feeding nematodes) richness—plant P acquisition relationships. Using a set of six microcosm experiments conducted in growth chamber across contrasting P situations, we tested the hypothesis that the re
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Tian, Zhun, Rui Wang, Zihan Sun, Yang Peng, Mingfeng Jiang, Shiqi Wu, Ziqiang Yuan, Xin Song, Chao Fang, and Jordi Sardans. "Non-Linear Relationships between Fine Root Functional Traits and Biomass in Different Semi-Arid Ecosystems on the Loess Plateau of China." Forests 15, no. 7 (July 15, 2024): 1226. http://dx.doi.org/10.3390/f15071226.

Texto completo
Resumen
As a key soil carbon process, changes in plant root growth may have a dramatic impact on the global ecosystem’s carbon cycle. Fine root functional traits and fine root biomass can be used as important indexes of plant root growth. Compared with the much better understood relationships between aboveground plant functional traits and aboveground biomass, knowledge on the relationships between fine root functional traits and belowground biomass still remains limited. In this study, plant fine roots in 30 abandoned lands, 9 woodlands, 29 alfalfa grasslands, 30 Caragana shrublands and 29 croplands
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Heckman, J. R., and J. E. Strick. "Teaching Plant-Soil Relationships with Color Images of Rhizosphere pH." Journal of Natural Resources and Life Sciences Education 25, no. 1 (March 1996): 13–17. http://dx.doi.org/10.2134/jnrlse.1996.0013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Babcock, E. L., and J. C. Silvertooth. "Soil Testing and Plant Analysis Relationships for Irrigated Chile Production." Communications in Soil Science and Plant Analysis 43, no. 20 (November 2012): 2651–68. http://dx.doi.org/10.1080/00103624.2012.711879.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Blank, Robert R., and Justin D. Derner. "Effects of CO2enrichment on plant-soil relationships of Lepidium latifolium." Plant and Soil 262, no. 1/2 (May 2004): 159–67. http://dx.doi.org/10.1023/b:plso.0000037032.43098.5c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Naz, Nargis, Mansoor Hameed, Tahira Nawaz, M. Sajid Aqeel Ahmad, and Muhammad Ashraf. "Soil-Plant Relationships in the Arid Saline Desert of Cholistan." Arid Land Research and Management 27, no. 2 (April 2013): 140–52. http://dx.doi.org/10.1080/15324982.2012.719576.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Mitchell, Ruth J., Hannah M. Urpeth, Andrea J. Britton, and Astrid R. Taylor. "Soil microarthropod-plant community relationships in alpine moss- sedge heath." Applied Soil Ecology 111 (March 2017): 1–8. http://dx.doi.org/10.1016/j.apsoil.2016.10.010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Nettleton, W. D., and F. F. Peterson. "Landform, soil, and plant relationships to nitrate accumulation, Central Nevada." Geoderma 160, no. 3-4 (January 2011): 265–70. http://dx.doi.org/10.1016/j.geoderma.2010.08.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Teixeira de Oliveira, Job, Rubens Alves de Oliveira, Domingos Sarvio Magalhães Valente, Isabela da Silva Ribeiro, and Paulo Eduardo Teodoro. "Spatial Relationships of Soil Physical Attributes with Yield and Lateral Shoot Growth of Garlic." HortScience 55, no. 7 (July 2020): 1053–54. http://dx.doi.org/10.21273/hortsci15082-20.

Texto completo
Resumen
Some compaction states cause changes in soil structure, resulting in increased soil density and soil resistance to penetration (RP). The objective of this study was: a) to analyze the variability of the studied attributes of the plant and the soil; b) define the linear and spatial correlations between plant and soil attributes; and c) to identify the best attributes that correlate spatially with garlic yield (GY) and lateral shoot growth (LSG) for the elaboration of spatial variability maps. The attributes evaluated were GY, apparent soil electrical conductivity (EC), mechanical resistance to
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Scudiero, Elia, Pietro Teatini, Gabriele Manoli, Federica Braga, Todd Skaggs, and Francesco Morari. "Workflow to Establish Time-Specific Zones in Precision Agriculture by Spatiotemporal Integration of Plant and Soil Sensing Data." Agronomy 8, no. 11 (November 7, 2018): 253. http://dx.doi.org/10.3390/agronomy8110253.

Texto completo
Resumen
Management zones (MZs) are used in precision agriculture to diversify agronomic management across a field. According to current common practices, MZs are often spatially static: they are developed once and used thereafter. However, the soil–plant relationship often varies over time and space, decreasing the efficiency of static MZ designs. Therefore, we propose a novel workflow for time-specific MZ delineation based on integration of plant and soil sensing data. The workflow includes four steps: (1) geospatial sensor measurements are used to describe soil spatial variability and in-season plan
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Perkins, Lora B., and Robert S. Nowak. "Soil conditioning and plant–soil feedbacks affect competitive relationships between native and invasive grasses." Plant Ecology 213, no. 8 (July 12, 2012): 1337–44. http://dx.doi.org/10.1007/s11258-012-0092-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

He, Lei, Lulu Cheng, Liangliang Hu, Jianjun Tang, and Xin Chen. "Deviation from niche optima affects the nature of plant–plant interactions along a soil acidity gradient." Biology Letters 12, no. 1 (January 2016): 20150925. http://dx.doi.org/10.1098/rsbl.2015.0925.

Texto completo
Resumen
There is increasing recognition of the importance of niche optima in the shift of plant–plant interactions along environmental stress gradients. Here, we investigate whether deviation from niche optima would affect the outcome of plant–plant interactions along a soil acidity gradient (pH = 3.1, 4.1, 5.5 and 6.1) in a pot experiment. We used the acid-tolerant species Lespedeza formosa Koehne as the neighbouring plant and the acid-tolerant species Indigofera pseudotinctoria Mats. or acid-sensitive species Medicago sativa L. as the target plants. Biomass was used to determine the optimal pH and t
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Qi, Shanshan, Jiahao Wang, Yi Zhang, Misbah Naz, Muhammad Rahil Afzal, Daolin Du, and Zhicong Dai. "Omics Approaches in Invasion Biology: Understanding Mechanisms and Impacts on Ecological Health." Plants 12, no. 9 (April 30, 2023): 1860. http://dx.doi.org/10.3390/plants12091860.

Texto completo
Resumen
Invasive species and rapid climate change are affecting the control of new plant diseases and epidemics. To effectively manage these diseases under changing environmental conditions, a better understanding of pathophysiology with holistic approach is needed. Multiomics approaches can help us to understand the relationship between plants and microbes and construct predictive models for how they respond to environmental stresses. The application of omics methods enables the simultaneous analysis of plant hosts, soil, and microbiota, providing insights into their intricate relationships and the m
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Kulmatiski, Andrew, Karen H. Beard, and Justin Heavilin. "Plant–soil feedbacks provide an additional explanation for diversity–productivity relationships." Proceedings of the Royal Society B: Biological Sciences 279, no. 1740 (April 11, 2012): 3020–26. http://dx.doi.org/10.1098/rspb.2012.0285.

Texto completo
Resumen
Plant–soil feedbacks (PSFs) have gained attention for their role in plant community dynamics, but their role in productivity has been overlooked. We developed and tested a biomass-specific, multi-species model to examine the role of PSFs in diversity–productivity relationships. The model predicts a negative relationship between PSFs and overyielding: plants with negative PSFs grow more in communities than in monoculture (i.e. overyield), and plants with positive PSFs grow less in communities than in monoculture (i.e. underyield). This effect is predicted to increase with diversity and saturate
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Brillante, L., O. Mathieu, B. Bois, C. van Leeuwen, and J. Lévêque. "The use of soil electrical resistivity to monitor plant and soil water relationships in vineyards." SOIL 1, no. 1 (March 17, 2015): 273–86. http://dx.doi.org/10.5194/soil-1-273-2015.

Texto completo
Resumen
Abstract. Soil water availability deeply affects plant physiology. In viticulture it is considered a major contributor to the "terroir" effect. The assessment of soil water in field conditions is a difficult task, especially over large surfaces. New techniques are therefore required in order to better explore variations of soil water content in space and time with low disturbance and with great precision. Electrical resistivity tomography (ERT) meets these requirements for applications in plant sciences, agriculture and ecology. In this paper, possible techniques to develop models that allow t
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Brillante, L., O. Mathieu, B. Bois, C. van Leeuwen, and J. Lévêque. "The use of soil electrical resistivity to monitor plant and soil water relationships in vineyards." SOIL Discussions 1, no. 1 (October 29, 2014): 677–707. http://dx.doi.org/10.5194/soild-1-677-2014.

Texto completo
Resumen
Abstract. Soil water availability deeply affects plant physiology. In viticulture it is considered as a major contributor to the "terroir" expression. The assessment of soil water in field conditions is a difficult task especially over large surfaces. New techniques, are therefore required to better explore variations of soil water content in space and time with low disturbance and with great precision. Electrical Resistivity Tomography (ERT) meets these requirements, for applications in plant sciences, agriculture and ecology. In this paper, possible techniques to develop models that allow th
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Mercader, Julio, Siobhán Clarke, Mariam Bundala, Julien Favreau, Jamie Inwood, Makarius Itambu, Fergus Larter, et al. "Soil and plant phytoliths from the Acacia-Commiphora mosaics at Oldupai Gorge (Tanzania)." PeerJ 7 (December 11, 2019): e8211. http://dx.doi.org/10.7717/peerj.8211.

Texto completo
Resumen
This article studies soil and plant phytoliths from the Eastern Serengeti Plains, specifically the Acacia-Commiphora mosaics from Oldupai Gorge, Tanzania, as present-day analogue for the environment that was contemporaneous with the emergence of the genus Homo. We investigate whether phytolith assemblages from recent soil surfaces reflect plant community structure and composition with fidelity. The materials included 35 topsoil samples and 29 plant species (20 genera, 15 families). Phytoliths were extracted from both soil and botanical samples. Quantification aimed at discovering relationships
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Ramana Reddy, D. V., G. R. Maruthi Sankar, K. Rama Subbaiah, M. Sreenivasa Chari, S. Harish Kumar Sharma, N. Pushpanjali, V. Visha Kumari, and P. Naga Sravani. "Soil-Plant-Fertilizer Relationships in Turmeric Assessment of Soil-Plant-Fertilizer-Nutrient Relationships for Sustainable Productivity of Turmeric under Alfisols and Inceptisols in Southern India." Communications in Soil Science and Plant Analysis 46, no. 6 (March 16, 2015): 781–99. http://dx.doi.org/10.1080/00103624.2015.1006368.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!