Literatura académica sobre el tema "Plant proteins Genetic aspects"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Plant proteins Genetic aspects".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Plant proteins Genetic aspects"
Pandey, Sona. "Plant receptor-like kinase signaling through heterotrimeric G-proteins". Journal of Experimental Botany 71, n.º 5 (13 de enero de 2020): 1742–51. http://dx.doi.org/10.1093/jxb/eraa016.
Texto completoTichá, Tereza, Despina Samakovli, Anna Kuchařová, Tereza Vavrdová y Jozef Šamaj. "Multifaceted roles of HEAT SHOCK PROTEIN 90 molecular chaperones in plant development". Journal of Experimental Botany 71, n.º 14 (7 de abril de 2020): 3966–85. http://dx.doi.org/10.1093/jxb/eraa177.
Texto completoSoyano, Takashi, Masaki Ishikawa, Ryuichi Nishihama, Satoshi Araki, Mayumi Ito, Masaki Ito y Yasunori Machida. "Control of plant cytokinesis by an NPK1–mediated mitogen–activated protein kinase cascade". Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 357, n.º 1422 (29 de junio de 2002): 767–75. http://dx.doi.org/10.1098/rstb.2002.1094.
Texto completoLi, Lei y Detlef Weigel. "One Hundred Years of Hybrid Necrosis: Hybrid Autoimmunity as a Window into the Mechanisms and Evolution of Plant–Pathogen Interactions". Annual Review of Phytopathology 59, n.º 1 (25 de agosto de 2021): 213–37. http://dx.doi.org/10.1146/annurev-phyto-020620-114826.
Texto completoFrolova, T. S., V. A. Cherenko, O. I. Sinitsyna y A. V. Kochetov. "Genetic aspects of potato resistance to phytophthorosis". Vavilov Journal of Genetics and Breeding 25, n.º 2 (29 de abril de 2021): 164–70. http://dx.doi.org/10.18699/vj21.020.
Texto completoHadi, Joshua y Gale Brightwell. "Safety of Alternative Proteins: Technological, Environmental and Regulatory Aspects of Cultured Meat, Plant-Based Meat, Insect Protein and Single-Cell Protein". Foods 10, n.º 6 (28 de mayo de 2021): 1226. http://dx.doi.org/10.3390/foods10061226.
Texto completoDziechciarková, M., A. Lebeda, I. Doležalová y D. Astley. "Characterization of Lactuca spp. germplasm by protein and molecular markers – a review". Plant, Soil and Environment 50, No. 2 (21 de noviembre de 2011): 47–58. http://dx.doi.org/10.17221/3680-pse.
Texto completoKayser, Oliver. "Ethnobotany and Medicinal Plant Biotechnology: From Tradition to Modern Aspects of Drug Development". Planta Medica 84, n.º 12/13 (24 de mayo de 2018): 834–38. http://dx.doi.org/10.1055/a-0631-3876.
Texto completoSluse, Francis E. y Wieslawa Jarmuszkiewicz. "Uncoupling proteins outside the animal and plant kingdoms: functional and evolutionary aspects". FEBS Letters 510, n.º 3 (6 de diciembre de 2001): 117–20. http://dx.doi.org/10.1016/s0014-5793(01)03229-x.
Texto completoTripathy, Manas K., Renu Deswal y Sudhir K. Sopory. "Plant RABs: Role in Development and in Abiotic and Biotic Stress Responses". Current Genomics 22, n.º 1 (12 de abril de 2021): 26–40. http://dx.doi.org/10.2174/1389202922666210114102743.
Texto completoTesis sobre el tema "Plant proteins Genetic aspects"
Singh, Nagendra Kumar. "The structure and genetic control of endosperm proteins in wheat and rye". Title page, contents and abstract only, 1985. http://web4.library.adelaide.edu.au/theses/09PH/09phs6174.pdf.
Texto completoCheung, Wai-ying y 張慧盈. "Characterization of plant homeodomain finger protein 11 (PHF11), a candidate tumor suppressor, in esophageal squamous cell carcinoma". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B50162834.
Texto completopublished_or_final_version
Clinical Oncology
Master
Master of Philosophy
Maree, H. J. (Hans Jacob). "The expression of Dianthin 30, a ribosome inactivating protein". Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53633.
Texto completoENGLISH ABSTRACT: Ribosome inactivating proteins (RIPs) are currently classified as rRNA N-glycosidases, but also have polynucleotide: adenosine glycosidase activity. RIPs are believed to have anti-viral and anti-fungal properties, but the exact mechanism of these proteins still need to be elucidated.The mechanism of resistance however, appears to be independent of the pathogen. For resistance the RIP terminates virus infected plant cells and stops the reproduction and spread of the virus. Transgenic plants containing RIPs should thus be resistant to a wide range of viruses. The ultimate goal of the larger project of which this forms part is the development of virus resistant plants. To monitor the expression of a RIP in a transgenic plant a detection method had to be developed. Antibody detection of the RIP was decided upon as the most cost effective method. The RIP, Dianthin 30 from Dianthus caryophyllus (carnation), was used and expressed in bacterial and insect expression systems. The bacterial expression experiments were done using the pET expression system in BL21(DE3)pLysS cells. The expression in this system yielded recombinant protein at a very low concentration. Expression experiments were also performed in insect tissue culture with the baculovirus vector BAC-TO-BAC™.With this system the expression was also too low to be used for the production of antibodies. A Dianthin 30 specific peptide was then designed and then produced by Bio-Synthesis. This peptide was then used to raise antibodies to detect Dianthin 30. These antibodies were tested on Dianthus caryophyllus proteins. To establish if this detection method was effective to monitor the expression in plants, tobacco plants were transformed with Agrobacterium tumefaciens containing Dianthin 30 in the pART27 plant expression vector. The putative transformed plants were analysed with peR and Southern blots.
AFRIKAANSE OPSOMMING: Tans word Ribosomale-inaktiverende proteïene (RIPs) geklassifiseer as rRNA N-glikosidase wat ook polinukleotied: adenosien glikosidase aktiwiteit bevat. Daar word geglo dat RIPs anti-virale en anti-fungus eienskappe bevat, maar die meganisme van beskerming word nog nie ten volle verstaan nie. Dit is wel bewys dat die meganisme van weerstand onafhanklik is van die patogeen. Virus geinfekteerde plantselle word deur die RIP gedood om die voortplanting en verspreiding te bekamp en sodoende word weerstand bewerkstellig. Transgeniese plante wat dan 'n RIP bevat sal dus weerstandbiedend wees teen 'n wye spektrum virusse. Die hoofdoel van die breër projek, waarvan die projek deel uitmaak: is die ontwikkeling van virusbestande plante. Om die uitdrukking van die RIP in die transgeniese plante te kontroleer, moes 'n deteksie metode ontwikkel word. Die mees koste effektiewe deteksie metode is met teenliggame. Die RIP, Dianthin 30 from Dianthus caryophyllus (angelier) was gebruik vir uitdrukking in bakteriele- en insekweefselkultuur. Die bakteriele uitdrukkingseksperimente was gedoen met die pET uitdrukkings sisteem III BL21(DE3)pLysS selle. Die uitdrukking in die sisteem het slegs rekombinante proteïene gelewer in uiters lae konsentrasies. Uitdrukkingseksperimente was ook gedoen in insekweefselkultuur met die baculovirus vektor BAC-To- BACTM. Met die sisteem was die uitdrukking ook veels te laag om bruikbaar te wees vir die produksie van teenliggame. Daar is toe 'n peptied ontwerp wat Dianthin 30 kan verteenwoordig vir die produksie van teenliggame. Die teenliggame is getoets teen Dianthus caryophyllus proteïene. Om vas te stel of die deteksiemetode wel die uitdrukking van Dianthin 30 sal kan monitor, is tabak ook getransformeer met Dianthin 30. Die transformasies is gedoen met die hulp van Agrobacterium tumefaciens en die pART27 plant uitdrukkings vektor. Die plante is getoets met die polimerase ketting reaksie en Southern klad tegnieke.
Joubert, Dirk Albert 1973. "Regulation of the Vitis vinifera PGIP1 gene encoding a polygalacturonase-inhibiting protein". Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/53759.
Texto completoENGLISH ABSTRACT: Plant-pathogen interactions have been intensively investigated in the last decade. This major drive towards understanding the fundamental aspects involved in plant disease resistance is propelled by the obvious agricultural and economical benefits that are intrinsically linked to disease and stress resistant plants. It is, therefore, not surprising that fundamental research in this area is not just restricted to model organisms, such as Arabidopsis and tobacco, but also extends to more traditional crop plants, such as maize, bean, soybean, apples, grapevine etc. In grapevine for instance, several genes involved in disease resistance have been isolated. One of these genes, encoding for a polygalacturonase inhibiting protein (PGIP), has been studied extensively. PGIPs are cell wall bound, contain leucine rich repeats (LRR) and are found in all dicotyledonous plants so far examined. In most cases, pgip genes occur in small multigene families and expression is often tissue specific and developmentally regulated. Up-regulation of PGIP-encoding genes typically occurs upon pathogen infection, treatment with elicitors, salicylic acid (SA), jasmonic acid (JA), cold treatment and wounding. Differential regulation and specificity have been shown to occur between members of the same multigene family. Differential regulation even extends to the utilization of separate pathways to induce pgip genes from the same family in response to a single stress stimulus. PGIPs interact with cell wall macerating polygalacturonases (PGs) that are secreted by pathogenic fungi during the infection process. The antifungal action of PGIPs is thought to depend on a dual action. The physical interaction of PGIP with PGs has an inhibitionary effect, resulting in (i) a slower fungal infection rate and (ii) the prolonged existence of long chain oligogalacturonides (OGs). These oligosaccharides are able to elicit a general plant defense response, enabling the plant to further retard or curb the spread of infection. The main objective of this study was to investigate the regulatory aspects underlying PGIP expression in grapevine. Unlike most characterized PGIP encoding genes from other dicotyledonous plant species, no evidence to support the existence of a V. vinifera PGIP multigene family could be found from either genetic or biochemical analyses. Recently, a genomic DNA fragment from Vitis vinifera cv Pinotage was pathogen interactions with regards to the fundamental processes underlying defense gene regulation.
AFRIKAANSE OPSOMMING: Die ooglopende voordele wat, vanuit 'n landboukundige én ekonomiese oogpunt, uit siekte- en stresbestande plante spruit, het gedurende die laaste dekade aanleiding gegee tot die ontwikkeling van plantpatogeen-interaksies as "n baie belangrike studieveld. Dit was dus ook te verwagte dat fundamentele navorsing in hierdie area nie net beperk gebly het tot modelorganismes soos Arabidopsis en tabak (ook natuurlik van landboukundige belang) nie, maar ook na meer tradisionele landbougewasse soos mielies, boontjies, sojaboontjies, appels, druiwe, ens. oorgevloei het. Verskeie siekteweerstands-verwante gene is byvoorbeeld al vanuit wingerd geïsoleer. Een só "n geen wat vir "n poligalakturonase-inhiberende proteïen (PGIP) kodeer, vorm deel van hierdie groep gene. Die funksie en regulering van PGIP's is baie goed bestudeer. Hierdie proteïene word normaalweg in die selwande van die meeste dikotiele plante aangetref. Leusienryke herhalings is algemeen in PGIP's en hierdie tipe van herhalings is kenmerkend van proteïene betrokke by proteïen-proteïen-interaksies. Verder word pgip-gene gewoonlik in klein multigeenfamilies aangetref, waar in die meeste gevalle die uitdrukking weefselspesifiek en die regulering spesifiek ten opsigte van die ontwikkelingsfase is. Verskeie faktore kan tot die induksie van pgip-gene lei, soos onder andere patogeen-infeksie, elisitoor-, salisiensuur-, jasmoonsuur- en kouebehandeling, asook verwonding. Differensiële regulering word in baie gevalle tussen lede van dieselfde multigeenfamilie aangetref. Hierdie differensiële regulering kan selfs bemiddel word deur onafhanklike reguleringsweë in reaksie op dieselfde induksiestimulus. PGIP's is in staat om te reageer met poligalakturonases (PGs), wat selwande afbreek en wat gedurende die infeksieproses deur swamme of fungi afgeskei word. Die effek van hierdie interaksie is tweeledig: (i) Die fisiese interaksie tussen PGIP en PG moduleer die aktiwiteit van die PG deur die ensiemaksie te inhibeer, en (ii) PGinhibisie lei tot die verhoogde stabiliteit van langketting-oligogalakturonades, molekules wat daartoe in staat is om die weerstandsrespons van plante te ontlok. Die inhibisie van die patogeen-PG's, tesame met die geïnduseerde weerstandrespons, stel die plant dan in staat om verdere infeksie te vertraag of te verhoed. Die doel van hierdie studie was om die onderliggende aspekte van PGIPregulering in wingerd te bestudeer. In teenstelling met die meeste plantspesies waar pgip-gene in klein multigeenfamilies aangetref word, is daar nie 'n pgip-multigeenfamilie in wingerd nie. Veelvuldige kopieë van In enkele pgip-geen word egter in die wingerdgenoom aangetref. Daar is onlangs in ons laboratorium In genoom-DNAfragment vanaf Vitis vinifera cv Pinotage geïsoleer wat die oopleesraam en 5'-stroomopsekwense van In PGIP-enkoderende geen (Vvpgip1) bevat. In hierdie studie is die uitdrukkingspatroon van Vvpgip1 ten opsigte van weefselspesifisiteit, korrelontwikkelingsfase, asook die effek van verskeie omgewings en patogeenverwante stres-stimuli ontleed. Die regulatoriese meganismes van Vvpgip1 bevat spesifieke in planta-ontwikkelingsfaseseine wat verder deur spesifieke faktore, insluitende omgewings- en patogeenstres, gereguleer word. In lyn hiermee is mRNS-transkripte van Vvpgip1 tot wortel- en korrelweefsels beperk, terwyl die mRNS-vlakke ook tussen verskillende korrelontwikkelingsfases wissel. Kumulatiewe uitdrukking kon waargeneem word in veráison-korrels in reaksie op verwonding en osmotiese stres. Die weefselspesifieke uitdrukkingspatroon tipies van wingerd-PGIP is in blare opgehef in reaksie op Botrytis cinerea-infeksie, verwonding, osmotiese stres, ouksien (indoolasynsuur) en salisiensuur. PGIP-uitdrukking word ook onderdruk deur In staurosporien-sensitiewe proteïenkinase, wat In goeie aanduiding is van die betrokkenheid van proteïenfosforilasie in die seintransduksiekaskade wat tot PGIPuitdrukking aanleiding gee. Die geïnduseerde PGIP-uitdrukkingsprofiel in wingerdblare kan ook nageboots word in tabak wat met die Vvpgip1-geen en -promotor getransformeer is. PG-inhibisie-eksperimente met membraan-geassosieerde proteïenekstrakte van geïnduseerde wingerdblare het ook dieselfde profiel getoon as dié van PGIP wat deur die Vvpgip1-geen geënkodeer is. Die uitdrukkingsprofiel van PGIP in die transgeniese tabakplante het ook bewys dat die promotor van die Vvpgip1-geen vir die geïnduseerde PGIP-uitdrukkingsprofiel in wingerdblare verantwoordelik is. In silica-analise van die promotorarea dui op die teenwoordigheid van verskeie cis-werkende elemente. Die kern promotor en transkripsie-aanvangsgedeelte is gevolglik eksperimenteel bepaal. Verder het uitdrukkingseksperimente met promotorfragmente verskeie dele van die promotor geïdentifiseer wat by stimulis-geassosieerde uitdrukking betrokke is. Posisioneel is hierdie fragmente in goeie konteks met die voorspelde cis-werkende elemente en kan dus die basis vorm vir verdere studies oor Vvpgip-regulering. Met hierdie studie word die eerste data verskaf waar die regulering van PGIP deur omgewingsverwante faktore verbind kan word met onwikkelingspesifieke toestande in die plant. Verder verskaf die resultate verdere bewyse vir die rol van PGIP in plant-patogeen-interaksies en lewer spesifieke bydraes tot die onderliggende prosesse wat by die regulering van siekteweerstandverwante gene betrokke is.
Becker, John van Wyk. "Plant defence genes expressed in tobacco and yeast". Thesis, Stellenbosch : University of Stellenbosch, 2002. http://hdl.handle.net/10019/2924.
Texto completoSassi, Giovanna. "Relative quantification of host gene expression and protein accumulation upon turnip mosaic potyvirus infection in tobacco". Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=81433.
Texto completoTobacco protein accumulation in whole leaf tissues was also significantly affected by increase of virus particles.
Ozumit, Alen. "Interaction between turnip mosaic potyvirus (TuMV) cylindrical inclusion protein and Arabidopsis thaliana histone H3 protein". Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=79060.
Texto completoZhan, Ye. "Molecular analysis of turnip crinkle virus coat protein mutations". Link to electronic thesis, 2002. http://www.wpi.edu/Pubs/ETD/Available/etd-0430102-142639.
Texto completoPhelan, Thomas Joseph. "GENETIC AND MOLECULAR ANALYSIS OF PLANT NUCLEAR MATRIX PROTEINS". NCSU, 2001. http://www.lib.ncsu.edu/theses/available/etd-20011104-233111.
Texto completoPHELAN, THOMAS JOSEPH, Genetic and Molecular Analysis of Plant Nuclear Matrix Proteins. (Under the direction of Steven L. Spiker.)The eukaryotic nucleus is composed of DNA, RNA and protein, encapsulated by a nuclear envelope. DNA is compacted up to ten thousand times in order to be packaged into the nucleus. The nucleus must maintain order in the presence of a very high density and variety of protein and RNA. The nuclear matrix is a proteinaceous network thought to provide structure and organization to the nucleus. We believe that relatively stable interactions of nuclear molecules with the nuclear matrix are key to organization of the nucleus. Numerous "Matrix Attachment Region" DNA elements (MARs), have been isolated from plants, animals, and fungi. Evidence suggests that these MARs attach to the nuclear matrix, delimiting loops of chromosomal DNA. In studies of transgenic plants and animals, MARs have been shown to give important advantages to organisms transformed with genes flanked by these elements. Unlike most DNA elements, no specific sequence elements have been identified in MAR DNAs. Partly due to the insolubility of the matrix, and to the heterogeneity of MAR DNA, very few of the protein components of the nuclear matrix have been identified. This work presents analysis the proteins of the plant nuclear matrix. We have characterized a set of related proteins from the model plant Arabidopsis that associate with MAR DNA in vitro. These proteins appear to be similar to the NOP56/NOP58 family of proteins previously identified in several eukaryotic organisms. The NOP56/NOP58 proteins are thought to be involved in modifications of ribosomal RNA. Binding studies presented in this work suggest that these plant proteins may participate in RNA/DNA/protein complexes in the nucleus.
Tan, Lor-Wai. "Biochemical aspects of self-incompatibility in Petunia hybrida". Title page, Contents and Summary only, 1988. http://web4.library.adelaide.edu.au/theses/09A/09at161.pdf.
Texto completoLibros sobre el tema "Plant proteins Genetic aspects"
Bharló, Gillian Ní. Cloning and characterisation of an Auxin-binding protein cDNA from apple. Dublin: University College Dublin, 1997.
Buscar texto completoInternational Symposium on Genetic Aspects of Plant Mineral Nutrition (4th 1991 Canberra, A.C.T.). Genetic aspects of plant mineral nutrition. Dordrecht: Kluwer Academic Publishers, 1993.
Buscar texto completoEl Bassam, N., M. Dambroth y B. C. Loughman, eds. Genetic Aspects of Plant Mineral Nutrition. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2053-8.
Texto completoGabelman, W. H. y B. C. Loughman, eds. Genetic Aspects of Plant Mineral Nutrition. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3581-5.
Texto completoRandall, P. J., E. Delhaize, R. A. Richards y R. Munns, eds. Genetic Aspects of Plant Mineral Nutrition. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1650-3.
Texto completoInternational, Symposium on Genetic Aspects of Plant Mineral Nutrition (2nd 1985 Madison Wis ). Genetic aspects of plant mineral nutrition: Proceedings of the Second International Symposium on Genetic Aspects of Plant Mineral Nutrition. Dordrecht: M. Nijhoff, 1987.
Buscar texto completoJohn, King. The genetic basis of plant physiological processes. New York: Oxford University Press, 1991.
Buscar texto completoTodorov, I. N. Mechanisms of cell stability: Subcellular and molecular aspects. New York: Nova Science Publishers, 1994.
Buscar texto completoGuinivan, Phyllis. Selected abstracts on oncogene protein products. Bethesda, MD: U.S. Dept. of Health and Human Services, Public Health Service, National Institutes of Health, International Cancer Research Data Bank, National Cancer Institute, 1987.
Buscar texto completoGustavsson, Hans-Olof. Studies on the expression of the seed storage proteins napin and cruciferin from Brassica napus. Uppsala, Sweden: Swedish University of Agricultural Sciences, Uppsala Genetic Center, Dept. of Cell Research, 1994.
Buscar texto completoCapítulos de libros sobre el tema "Plant proteins Genetic aspects"
Flowers, T. J. y D. Dalmond. "Protein synthesis in halophytes: The influence of potassium, sodium and magnesium in vitro". En Genetic Aspects of Plant Mineral Nutrition, 195–203. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1650-3_25.
Texto completoMemon, Abdul Razaque y Anthony D. M. Glass. "Genotypic differences in subcellular compartmentation of K+: Implications for protein synthesis, growth and yield". En Genetic Aspects of Plant Mineral Nutrition, 323–29. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3581-5_30.
Texto completoWang, Melan y Katalin A. Hudak. "Applications of Plant Antiviral Proteins". En Genetic Engineering, 143–61. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0073-5_7.
Texto completoRobinson, C. "Targeting of proteins to chloroplasts and mitochondria". En Plant Genetic Engineering, 179–98. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-009-0403-3_6.
Texto completoRobinson, C. "Targeting of proteins to chloroplasts and mitochondria". En Plant Genetic Engineering, 179–98. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-010-9646-1_6.
Texto completoPayne, Peter I. "Endosperm Proteins". En A Genetic Approach to Plant Biochemistry, 207–31. Vienna: Springer Vienna, 1986. http://dx.doi.org/10.1007/978-3-7091-6989-6_7.
Texto completoKoornneef, Maarten. "Genetic Aspects of Abscisic Acid". En A Genetic Approach to Plant Biochemistry, 35–54. Vienna: Springer Vienna, 1986. http://dx.doi.org/10.1007/978-3-7091-6989-6_2.
Texto completoHill, J., H. C. Becker y P. M. A. Tigerstedt. "Genetic resources, genetic diversity and ecogeographic breeding". En Quantitative and Ecological Aspects of Plant Breeding, 235–67. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5830-5_9.
Texto completoBos, Izak y Peter Caligari. "Population genetic aspects of cross-fertilization". En Selection Methods in Plant Breeding, 5–25. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8432-6_2.
Texto completoRandhawa, G., J. Lyon, N. Harris, H. V. Davies y G. C. Machray. "Manipulation of Potato Tuber Protein Quality through Genetic Engineering". En Plant Proteins from European Crops, 70–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03720-1_12.
Texto completoActas de conferencias sobre el tema "Plant proteins Genetic aspects"
Kholodnyak, Oleksandr y Svitlana Pavlova. "THE CONSERVATION AND MANAGEMENT OF PLANT GENETIC RESOURCES". En THEORETICAL AND PRACTICAL ASPECTS OF MODERN SCIENTIFIC RESEARCH. European Scientific Platform, 2021. http://dx.doi.org/10.36074/logos-30.04.2021.v1.38.
Texto completo"Biochemical, molecular and genetic aspects of fruit ripening in green-fruited and red-fruited tomato species". En Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-179.
Texto completoPuzansky, R. K. y M. F. Shishova. "Metabolomic and molecular genetic aspects of trophic adaptation of mutants Chlamydomonas reinhardtii". En IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-366.
Texto completoTyapkina, D. Yu, E. Z. Kochieva y M. A. Slugin. "Biochemical and molecular genetic aspects of the metabolism of L-ascorbic acid invarieties and wild species of tomato (Solanum sect. Lycopersicon)". En IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-445.
Texto completoTsyganov, V. E. "Symbiotic nodule development". En 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.257.
Texto completoInformes sobre el tema "Plant proteins Genetic aspects"
Siedow, J. (Molecular studies of functional aspects of plant mitochondrial proteins): (Annual performance report for 1988--1989). Office of Scientific and Technical Information (OSTI), enero de 1989. http://dx.doi.org/10.2172/5963065.
Texto completo