Literatura académica sobre el tema "Plant mites"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Plant mites".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Plant mites"
de Lillo, Enrico, Juliana Freitas-Astúa, Elliot Watanabe Kitajima, Pedro Luis Ramos-González, Sauro Simoni, Aline Daniele Tassi y Domenico Valenzano. "Phytophagous mites transmitting plant viruses: update and perspectives". Entomologia Generalis 41, n.º 5 (29 de octubre de 2021): 439–62. http://dx.doi.org/10.1127/entomologia/2021/1283.
Texto completoCruz-Miralles, Joaquín, Marc Cabedo-López, Michela Guzzo, Sandra Vacas, Vicente Navarro-Llopis, M. Victoria Ibáñez-Gual, Víctor Flors, Marta Montserrat y Josep A. Jaques. "Host plant scent mediates patterns of attraction/repellence among predatory mites". Entomologia Generalis 42, n.º 2 (15 de marzo de 2022): 217–29. http://dx.doi.org/10.1127/entomologia/2021/1237.
Texto completoFeng, Ying. "Plant MITEs: Useful Tools for Plant Genetics and Genomics". Genomics, Proteomics & Bioinformatics 1, n.º 2 (mayo de 2003): 90–100. http://dx.doi.org/10.1016/s1672-0229(03)01013-1.
Texto completoGamliel-Atinsky, E., S. Freeman, A. Sztejnberg, M. Maymon, R. Ochoa, E. Belausov y E. Palevsky. "Interaction of the Mite Aceria mangiferae with Fusarium mangiferae, the Causal Agent of Mango Malformation Disease". Phytopathology® 99, n.º 2 (febrero de 2009): 152–59. http://dx.doi.org/10.1094/phyto-99-2-0152.
Texto completoPratt, P. D. y B. A. Croft. "Banker Plants: Evaluation of Release Strategies for Predatory Mites". Journal of Environmental Horticulture 18, n.º 4 (1 de diciembre de 2000): 211–17. http://dx.doi.org/10.24266/0738-2898-18.4.211.
Texto completoKarlik, J., A. D. Ali y C. A. Harwood. "Spider Mites in Rose Plant Fields, 1988". Arthropod Management Tests 19, n.º 1 (1 de enero de 1994): 335. http://dx.doi.org/10.1093/amt/19.1.335.
Texto completoFLECHTMANN, CARLOS H. W. y JEAN ETIENNE. "On plant mites from Guadeloupe, with descriptions of four new species of Eriophyidae". Zootaxa 1046, n.º 1 (8 de septiembre de 2005): 55. http://dx.doi.org/10.11646/zootaxa.1046.1.6.
Texto completoALBA, JUAN MANUEL, JOSEPHINE BLAAZER, JIE LIU, CARLOS VILLARROEL, THOMAS VAN LEEUWEN, WANNES DERMAUW y MERIJN KANT. "Searching for genes that make plants susceptible to spider mites as a target for resistance breeding". Zoosymposia 22 (30 de noviembre de 2022): 42. http://dx.doi.org/10.11646/zoosymposia.22.1.12.
Texto completoPetanovic, Radmila, Dejan Marcic y Biljana Vidovic. "Mite pests in plant crops: Current issues, inovative approaches and possibilities for controlling them". Pesticidi i fitomedicina 25, n.º 1 (2010): 9–27. http://dx.doi.org/10.2298/pif1001009p.
Texto completoOzawa, Rika, Takeshi Shimoda, Masayoshi Kawaguchi, Gen-ichiro Arimura, Jun-ichiro Horiuchi, Takaaki Nishioka y Junji Takabayashi. "Lotus japonicus Infested with Herbivorous Mites Emits Volatile Compounds That Attract Predatory Mites". Journal of Plant Research 113, n.º 4 (diciembre de 2000): 427–33. http://dx.doi.org/10.1007/pl00013951.
Texto completoTesis sobre el tema "Plant mites"
Pauw, Anton. "Mite-plant mutualism: leaf domatia of African plants house beneficial mites". Thesis, University of Cape Town, 1992. http://hdl.handle.net/11427/25735.
Texto completoCruz, Miralles Joaquín. "Plant defense responses induced by phytoseiid predatory mites". Doctoral thesis, Universitat Jaume I, 2019. http://hdl.handle.net/10803/667321.
Texto completoEsta tesis estudia la capacidad de los fitoseidos para inducir respuestas defensivas en cítricos. Primero, estudiamos la activación de las rutas de defensa para dos patrones con diferente resistencia a Tetranychus urticae, Citrus aurantium y C. reshni. Los análisis metabolómicos muestran que las rutas del ácido jasmónico, ácido salicílico y flavonoides se modificaron en función del genotipo de la planta y de la dieta del fitoseido. En cuanto a resultados de atracción y repelencia de cítricos infestados por fitoseidos, el comportamiento dependió del fitoseido inductor. En ensayos de elección sin planta se observó que los fitoseidos son repelentes para T. urticae. Además, se caracterizaron los volátiles liberados por los fitoseidos, mostrando diferentes compuestos orgánicos, desde volátiles verdes de planta hasta monoterpenos. Finalmente, analizamos la reproducción de los depredadores cuando se alimentan de araña procedente de distinto patrón. Concluimos que los fitoseidos pueden inducir respuestas defensivas en las plantas.
O'Connell, Dean Michael y n/a. "Plant-arthropod interactions : domatia and mites in the genus Coprosma (Rubiaceae)". University of Otago. Department of Botany, 2009. http://adt.otago.ac.nz./public/adt-NZDU20090807.160026.
Texto completoMaeda, Taro. "Foraging behavior of predacious phytoseiid mites using herbivoreinduced plant volatiles". Kyoto University, 2001. http://hdl.handle.net/2433/150345.
Texto completo0048
新制・課程博士
博士(農学)
甲第9179号
農博第1212号
新制||農||834(附属図書館)
学位論文||H13||N3591(農学部図書室)
UT51-2001-N225
京都大学大学院農学研究科地域環境科学専攻
(主査)教授 高藤 晃雄, 教授 西岡 孝明, 教授 藤崎 憲治
学位規則第4条第1項該当
Van, der Walt Lene. "Characterisation of mites and peniciccium species associated with apple core rot diseases". Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/4056.
Texto completoENGLISH ABSTRACT: Dry core rot (DCR) and wet core rot (WCR) are among some of the most important postharvest diseases of apples in South Africa. Mouldy core (MC) is also a symptom associated with the core region of apples, but it is not of economical importance since apple tissue surrounding the core region is not affected as is the case with DCR and WCR. The incidence of core rots in harvested fruits can be as high as 12%, but in general ranges from 3 to 8%. Infections and losses can also occur during fruit handling in pack houses and during storage. Additionally, yield losses also occur prior to harvest within orchards due to premature fruit drop of core rot affected fruits. The incidence of core rot diseases in apples differ among apple cultivars, with most Red Delicious varieties being susceptible to the development of core rots, whereas core rots have rarely been reported in other cultivars such as Granny Smith. The etiology and epidemiology of WCR and DCR are poorly understood. Although many fungal genera have been associated with the diseases, small-spored Alternaria species are mainly associated with DCR, whereas Penicillium species including P. roquefortii, P. expansum and P. funiculosum have mainly been associated with WCR. Dry core rot infections have long been known to occur pre-harvest, whereas WCR is primarily known as a post-harvest disease where infections take place during fruit handling in pack houses. Recently, Tarsonemus mites have also been indicated as being a potential role player in the etiology of core rot diseases. The mites have been hypothesised to carry pathogen spores into the core region of apples, and they may also possibly cause small wounds that facilitate pathogen entry. In South Africa, apple growers have recently reported WCR as being present prior to harvest, which has not been reported previously. Therefore, the first aim of the study was to investigate the incidence, as well as the causal agent/s of pre-harvest WCR. The incidence of WCR ranged from 0% to 1.7% in eleven orchards, and was in general lower than that of DCR (0.4% to 6%). Isolation studies from eight internal positions in WCR apples showed that Penicillium was the predominant fungal genus in most of the positions, including the lesion area. Morphological and molecular characterisation of Penicillium isolates from WCR showed that P. 2 ramulosum prov. nom. was the main species isolated from lesions, as well as other isolation positions. However, this species was also the main species isolated from DCR, MC and asymptomatic apples. Penicillium expansum was only isolated at low frequencies from WCR and DCR apples. Other Pencillium species that were occasionally isolated included P. glabrum, P. chloroloma, P. chermisinum and a putative new species with closest affinity to P. dendriticum (P. species aff. dendriticum) on a DNA nucleotide sequence basis. Pathogenicity and virulence studies using three different inoculation methods showed that P. expansum was the most virulent species, followed by P. species aff. dendriticum. The P. ramulosum prov. nom. isolates varied in their virulence, but were all considered to have low virulence. The role of Tarsonemus mites in the etiology and epidemiology of core rot diseases is poorly understood, and therefore the second aim of the study was to investigate some of these aspects. The specific aims of the study were to (1) investigate the ecology of Tarsonemus mites in Red Delicious and Granny Smith orchards during different apple developmental stages, (2) determine if there is a significant association of Tarsonemus mites with diseased (WCR and DCR) fruits and (3) determine if potential core rot pathogenic fungi are associated with the mites. Tarsonemus mites were found in all of the investigated apple developmental stages (buds, blossoms, 4cm diameter fruit, mature fruit and mummies), having the highest incidence in mummies and mature fruits from Red Delicious and Granny Smith orchards. In Red Delicious fruits the Tarsonemus mites were found within the core and/or calyx tube, whereas in Granny Smith fruits the mites were restricted to the calyx tube. In Red Delicious fruits there was a significant association between dry core rot as well as total core rot (wet- and dry-core rot) with the presence of mites in the core, as well as total mites (mites in core and calyx tubes). Fungal isolation studies from the Tarsonemus mites showed that they carried potential core rot fungal pathogens within the genera Penicillium and Alternaria. The Penicillium species isolated from the mites included two of the most virulent WCR species, P. expansum and P. species aff. dendriticum.
AFRIKAANSE OPSOMMING: Droë kernvrot and nat kernvrot is van die belangrikste na-oes siektes van appels in Suid- Afrika. Beskimmelde kern word ook met die kern van appels geassosieer, maar hierdie toestand is egter nie van ekonomiese belang nie, aangesien die weefsel rondom die kern nie geaffekteer word soos in die geval van nat- en droë kernvrot nie. Die voorkoms van kernvrot in vrugte na oes, kan vlakke van tot 12% bereik, maar oor die algemeen is die voorkoms tussen 3 en 8%. Infeksie en verliese kan ook voorkom gedurende die hantering en verpakking van vrugte in pakhuise en gedurende storing. Addisionele verliese in opbrengs kan ook voor-oes voorkom in boorde. Dit is te wyte aan voortydige vrugval van appels wat besmet is met kernvrot. Die voorkoms van kernvrot by appels verskil tussen kultivars. Meeste van die “Red Delicious” variëteite is vatbaar vir die ontwikkeling van kernvrot. Die toestand is egter skaars by ander kultivars soos Granny Smith. Die etiologie en epidemiologie van nat- en droë kernvrot word nie goed verstaan nie. ‘n Groot aantal swamgenera is al met kernvrot geassosieer. Klein-spoor Alternaria spesies word hoofsaaklik met droë kernvrot geassosieer en Penicillium spesies, insluitende P. roquefortii, P. expansum en P. funiculosum, word meestal met nat kernvrot geassosieer. Dit is lank reeds bekend dat droë kernvrot as voor-oes siekte kan voorkom, maar nat kernvrot is algemeen bekend as na-oes siekte waar infeksie tydens vrughantering en verpakking plaasvind. Daar is onlangs aangedui dat Tarsonemus myte potensiële rolspelers in die etiologie van kernvrot is. Hipoteties is die myte in staat om spore van die patogene in die kern van die appels in te dra, asook om klein wonde te veroorsaak wat infeksie deur patogene vergemaklik. In Suid-Afrika is nat kernvrot wat voor-oes in die boorde ontstaan onlangs deur boere aangemeld; hierdie toestand is nog nie op ‘n vorige geleentheid aangemeld nie. Die eerste doelwit van hierdie studie was dus om die voorkoms en veroorsakende organisme/s van voor-oes nat kernvrot te ondersoek. Die voorkoms van nat kernvrot was tussen 0 en 1.7% in elf boorde en was oor die algemeen laer as die voorkoms van droë kernvrot (0.4 tot 6%). Isolasiestudies uit agt interne posisies van nat kernvrot appels het getoon dat Penicillium die dominante swamgenus in die meeste posisies was, insluitend die letsels. Morfologiese en molekulêre karakterisering van 4 Penicillium isolate uit nat kernvrot letsels het aangedui dat P. ramulosum prov. nom. die spesie is wat die meeste geïsoleer is vanuit die letsels, asook ander isolasie posisies. Dié spesie was egter ook die mees algemene spesie wat uit nat- en droë kernvrot, asimptomatiese appels en appels wat slegs swamgroei in die kern gehad het, geïsoleer is. Penicillium expansum was ook in lae getalle uit nat- en droë kernvrotletsels geïsoleer. Ander Penicillium spesies wat ook soms geïsoleer is, sluit P. glabrum, P. chloroloma, P. chermisinum, asook ‘n moontlik nuwe spesie wat op DNA volgorde basis die naaste aan P. dendriticum (P. spesie aff. dendriticum) is. Studies wat patogenesiteit en virulensie van die isolate ondersoek het, is ook uitgevoer deur gebruik te maak van drie verskillende inokulasie metodes. Die studies het aangedui dat P. expansum die mees virulente spesie is, gevolg deur P. spesie aff. dendriticum. Die P. ramulosum prov. nom. isolate het variasie in virulensie getoon maar is oor die algemeen aanvaar om minder virulent te wees. Die rol van Tarsonemus myte in die etiologie en epidemiologie van kernvrot word nie goed verstaan nie en dus was die tweede doelwit van die studie om sommige van dié aspekte te ondersoek. Die spesifieke doelwitte was (1) om die ekologie van die Tarsonemus myte in “Red Delicious” en Granny Smith boorde tydens verskillende ontwikkelingstadiums van die appels te ondersoek, (2) om te bepaal of daar ‘n betekenisvolle assosiasie van Tarsonemus myte met siek (nat- en droë kernvrot) vrugte bestaan en (3) om te bepaal of potensiële kernvrot patogeniese swamme geassosieer is met die myte. Tarsonemus myte is gevind in al die ontwikkelingstadiums (knoppies, bloeisels, 4 sentimeter deursnee vrugte, volwasse vrugte en mummies) van appels wat ondersoek is. Die hoogste voorkoms van myte was in die mummies en volwasse vrugte van “Red Delicious”, asook Granny Smith kultivars gevind. In “Red Delicious” vrugte is myte in die kern en/of kaliksbuis gevind, maar in die Granny Smith vrugte was die myte tot die kaliksbuis beperk. In “Red Delicious” vrugte was daar ‘n betekenisvolle assosiasie tussen droë kernvrot, asook totale kernvrot (nat en droë kernvrot) met die teenwoordigheid van myte in die kern, asook totale myte (myte in die kern en kaliksbuis). Swam isolasiestudies vanaf die Tarsonemus myte het aangetoon dat potensiële kernvrot swampatogene in die genera Penicillium en Alternaria wel by die myte teenwoordig was. Die Penicillium spesies wat vanaf die myte geïsoleer is het twee van die mees virulente nat kernvrot spesies ingesluit, nl. P. expansum en P. spesie aff. dendriticum.
Smith, Ian A. "The effects of two foraging traits on within-plant foraging efficiency of Phytoseiulus persimilis (Acari: phytoseiidae)". Thesis, Kansas State University, 2011. http://hdl.handle.net/2097/8632.
Texto completoDepartment of Entomology
David C. Margolies
James R. Nechols
Many crops grown in greenhouses are damaged by the twospotted spider mite, Tetranychus urticae. The predatory mite, Phytoseiulus persimilis, is a commercially-available predator that is commonly used to control twospotted spider mites on greenhouse crops; but its efficacy varies among crops, and it is generally ineffective at low prey densities. In general, predator foraging efficiency depends on how well predators find prey patches, the length of stay in prey patches, and consumption of prey while in prey patches. With respect to P. persimilis, I asked how this predator responds to different prey distributions, as might be encountered at different stages of spider mite infestations. I also asked how components of foraging, namely consumption rate and dispersal tendency, affected predator efficiency. To examine the former, I established T. urticae eggs on 6-leafed cucumber plants in two distributions. To examine the latter, I imposed artificial selection on a population of P. persimilis to create a line that exhibited extremely high consumption and one that demonstrated a greater tendency for dispersal. Subsequently, foraging efficiency was assessed by observing predator oviposition and consumption of twospotted mite eggs on individual leaves of 6-leafed cucumber plants. The number of eggs laid by predators corresponded to the number of prey consumed regardless of predator line. In addition, predators from both lines distributed their eggs proportional to where they fed. However, prey consumption differed between selected lines in response to prey distribution. Predators selected for high consumption fed more on the basal leaf where they were released; whereas prey consumption by the high dispersal and control lines were more evenly distributed throughout the plant. These results contribute to a better understanding of how foraging behavior is modified in plant landscapes under different levels of expression of foraging traits. They also indicate that predator release strategies likely would need to modified in accordance with the kind of foraging trait(s) used in artificial selection programs. In general, my research, when combined with future studies at a broader landscape level, will facilitate decisions by biological control practitioners about whether changes in foraging efficiency resulting from artificial selection justify the cost investment of producing selected lines of P. persimilis
Ruckert, Alice. "Interactions Between Plant Water-Stress and Neonicotinoid Insecticides on Spider Mite Infestations in Corn". DigitalCommons@USU, 2017. https://digitalcommons.usu.edu/etd/6428.
Texto completoCruz, Fredy Alexander Rodríguez. "Biological control of broad mites in chili pepper and physic nut". Universidade Federal de Viçosa, 2014. http://locus.ufv.br/handle/123456789/931.
Texto completoO ácaro-branco Polyphagotarsonemus latus (Banks, 1904) (Acari: Tarsonemidae) é uma praga chave de distribuição mundial que ataca várias espécies de plantas de alto valor econômico. No Brasil, este ácaro é considerado praga chave da cultura de pimenta malagueta e do pinhão manso, devido a sua frequente ocorrência em areas produtoras e aos danos causados. Na maioria das vezes seu controle é baseado na aplicação de produtos químicos, com todos os problemas derivados de seu uso abusivo. Uma alternativa ao controle químico é o uso do controle biológico. Os principais inimigos naturais dos ácaros fitófagos são ácaros da família Phytoseiidae. Vários inimigos naturais hão sido registrados em associação com o ácaro-branco no Brasil, os fitoseídeos (Amblyseius herbicolus, Neoseiulus barkeri, Euseius concordis, Iphiseiodes zuluagai and Typhlodromus transvaalensis) e uma espécie da família Blattisociidae (Lasioseius floridensis). Como um primeiro passo para a seleção de agentes de controle biológico para o ácaro-branco, foram avaliadas as taxas de predação e oviposição das espécies A. herbicolus, N. barkeri e L. floridensis em duas situações: uma mistura dos estádios do ácaro-branco e em todos os diferentes estádios da praga. Num segundo passo, foi avaliado em condições de casa de vegetação, a eficiência dos fitoseídeos, A. herbicolus e N. barkeri, no controle do ácaro branco em pimenta malagueta em diferentes relações predador: presa. Num segundo experimento, foi avaliado o controle em plantas de pimenta malagueta infestadas com o ácaro-branco, com e sem liberação de predadores e seu impacto na produção de frutos. Um terceiro passo, foi avaliado o controle do ácaro- branco em plantas de pinhão manso e pimenta malagueta infestadas artificialmente com a praga em condições de campo, com e sem liberação dos fitoseídeos e seu efeito na produção da pimenta malagueta. Nos experimentos de laboratório, os fitoseídeos predaram e ovipositaram quando se usou a mistura dos estádios do ácaro-branco e em cada um dos estádios. Amblyseius herbicolus apresentou uma maior taxa de predação e oviposição, nas duas situações avaliadas em comparação a N. barkeri. Entretanto, L. floridensis apresentou taxas de predação e oviposição baixas ou nulas nas duas situações avaliadas. Em casa de vegetação, A. herbicolus e N. barkeri controlaram as populações do ácaro-branco nas diferentes relações predador:presa; as plantas controle mostraram sintomas de um ataque severo sete dias após a infestação, incluindo a queda de folhas. No segundo experimento, os fitoseídeos mantiveram baixas as populações de ácaro-branco através do tempo. Assim mesmo, as plantas de pimenta malagueta com presença dos predadores apresentaram um maior número de frutos com maior peso do que as plantas controle. As plantas controle exibiram danos severos, incluindo queda de folhas. Em condições de campo, plantas de pinhão manso sem predadores exibiram altíssimas populações do ácaro-branco, sintomas severos, queda de folhas e altos valores na escala de notas de dano. Entretanto, plantas com predadores mostraram baixas populações da praga ao longo do tempo e não manifestaram sintomas severos. Em pimenta malagueta, as plantas sem predadores apresentaram maior número de ácaros-branco, curvamento e bronzeamento das folhas, porém a queda de folhas foi muito menor que registrada no experimento de casa de vegetação. Plantas de pimenta malagueta com presença de predadores exibiram baixo número de ácaros-branco e não apresentaram bronzeamento nem queda de folhas. Não houve diferença estatística no número e peso de frutos entre plantas de pimenta malagueta com e sem predadores, mas as plantas controle apresentaram frutos mais pequenos. Os predadores A. herbicolus e N. barkeri, foram efetivos no controle de populações do ácaro-branco nos diferentes passos avaliados neste estudo. As duas espécies predaram e ovipositaram ao se alimentar da praga. Em condições de casa de vegetação as plantas de pimenta malagueta foram beneficiadas pela presença dos predadores apresentando baixas populações da praga através do tempo, resultando na produção de frutos maiores e mais pesados. Em campo, os dois fitoseídeos tiveram a capacidade de manter em baixas densidades as populações do ácaro- branco no tempo, tanto em pinhão manso quanto em pimenta malagueta evitando o aparecimento de sintomas severos como os registrados nas plantas controle. Amblyseius herbicolus e N. barkeri podem ser considerados bons agentes de controle biológico do ácaro-branco. As duas espécies controlaram populações da praga em diferentes relações predador:presa, em condições de cultivo protegido e no campo. Os predadores conseguiram-se manter e aumentar em número no tempo, tanto em casa de vegetação quanto no campo, confirmando os resultados de laboratório. Adicionalmente, os predadores conseguiram aumentar seu número em baixas densidades de ácaro-branco, indicando que eles podem fazer uso de recursos alternativos como o pólen ou néctar das flores de pimenta malagueta. O potencial de controle destes fitoseídeos pode ser aproveitado em outras culturas susceptíveis ao ataque do ácaro-branco, como papaia, feijão, batata ou gérbera, tanto em casa de vegetação quanto em campo aberto.
The broad mite Polyphagotarsonemus latus (Banks 1904) is an important worldwide pest, with economic impact of several crops. In Brazil, this mite is considered a key pest of chili pepper and physic nut, due to their frequent occurrence in planting areas and damage caused to plant hosts. Its control is based on application of agrotoxics with several problems derived from misuse. An alternative to chemical control is biological control. The main natural enemies of phytophagous mites are predatory mites from the phytoseiidae family. Several natural enemies have been recorded in association with broad mites in Brazil, including the phytoseiids (Amblyseius herbicolus, Neoseiulus barkeri, Euseius concordis, Iphiseiodes zuluagai and Typhlodromus transvaalensis) and one blattisociid mite species (Lasioseius floridensis). As a first step to select biological control agents for broad mites, we evaluated the predation and oviposition rates of predatory mite of species A. herbicolus, N. barkeri and L. floridensis on a mixture of broad mite stages and on all different stages of the pest. As a second step, we evaluated under greenhouse conditions the phytoseiids A. herbicolus and N. barkeri on chili pepper with different predator:prey ratios. In a second experiment, we evaluated the control on chili pepper plants infested with broad mites, with and without predators and their impact on fruit production. In a third step, we assessed the control of broad mites on physic nut and chili pepper plants, artificially infested with the pest, under field conditions with and without phytoseiids and their effect on the chili pepper production. In laboratory experiments, the phytoseiids preyed and oviposited when offered a mix of broad mite stages or on each stage separately. Amblyseius herbicolus showed higher predation and oviposition rates on the mix of broad mite stages and on each stage separately compared with N. barkeri rates. Meanwhile, L. floridensis showed oviposition and predation rates low or zero on the mix of broad mite stages and on each stage separately. In the greenhouse, A. herbicolus and N. barkeri controlled broad mite population in the different predator:prey ratios; control plants showed symptoms of a severe attack seven days after infestation, including foliar abscission. In a second experiment, the phytoseiids maintained the broad mite populations at low density over time. Chili pepper plants with predators had a higher number of fruits with greater weight that control plants. Control plants showed higher values on scale notes of injury with severe damage, including foliar abscission. Under field conditions, physic nuts and chili peppers without predators showed a very high population of broad mites with higher values on scale notes of injury. These plants showed severe symptoms and foliar abscission. However, plants with predators showed a low population of pest through time with low values on scale notes of injury without presence of severe symptoms. In chili pepper, plants without predators had higher number of broad mite, curling and bronzing of leaves, but leaf fall was much lower than recorded in the greenhouse experiments. Chili pepper plants with predators showed low number of broad mites and showed no symptoms. There was no statistical difference in the number and weight of fruits from chili pepper plants with and without predators, but control plants had smaller fruits. The predators A. herbicolus and the Brazilian strain of N. barkeri showed effectivess in controlling broad mite populations on the different steps evaluated in this study. Both predators preyed and oviposited when feeding on the pest. Under greenhouse conditions, chili pepper plants were benefited by presence of predators, showing low populations of broad mites through time, resulting in the production of larger fruits with higher weight. In field, both phytoseiids had the ability to maintain broad mite populations on low density through time on physic nut and chili pepper plants, preventing the development of severe symptoms in the plants. Amblyseius herbicolus and N. barkeri can be considered good biological control agents of the broad mite. Both species controled pest populations with different predator:prey ratios in protected cultivation and in the field. Predators were able to maintained and increased on number through time when fed on broad mite, confirming the laboratory results. The potential of control of A. herbicolus and N. barkeri can be exploited in other crops susceptible to broad mite attack as bean, papaya, potato or gerbera, both on the greenhouse and open field conditions.
Junqueira, Barbara Rodrigues. "Diversidade de ácaros edáficos em um fragmento de mata atlântica e três cultivos agrícolas, em Jaboticabal/SP, com ênfase nos Gamasina (Mesostigmata)". Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/152291.
Texto completoApproved for entry into archive by Alexandra Maria Donadon Lusser Segali null (alexmar@fcav.unesp.br) on 2017-12-13T13:15:16Z (GMT) No. of bitstreams: 1 junqueira_br_me_jabo.pdf: 4886045 bytes, checksum: acd676ff2d3642858699d8bc8b2f628e (MD5)
Made available in DSpace on 2017-12-13T13:15:16Z (GMT). No. of bitstreams: 1 junqueira_br_me_jabo.pdf: 4886045 bytes, checksum: acd676ff2d3642858699d8bc8b2f628e (MD5) Previous issue date: 2017-10-31
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
No Brasil, os estudos que visam avaliar a diversidade e abundância de ácaros edáficos predadores, como os Gamasina (Mesostigmata), ainda são incipientes, focando principalmente em áreas de vegetação natural. No entanto, compreender o impacto da agricultura nestes organismos é importante no aspecto de preservar a biodiversidade e avaliar a sensibilidade destes indíviduos aos tratos culturais. Além disso, conhecer a diversidade desses ácaros edáficos é o primeiro passo na prospecção de novos agentes de controle biológico. Dessa forma, o objetivo dessa dissertação foi determinar e comparar a diversidade e abundância de espécies de ácaros edáficos presentes em um fragmento de Mata Atlântica e em três cultivos agrícolas, em Jaboticabal, estado de São Paulo, com ênfase nos Gamasina. As coletas de solo e serrapilheira (quando presente) foram realizadas bimenstralmente, entre os meses de agosto de 2015 a junho de 2017. Foram avaliadas quatro áreas: um fragmento de Mata Atlântica e cultivos de milho, soja e mangueiras. Cada coleta consistiu em 10 pontos amostrais aleatórios. No laboratório, as amostras foram colocadas em equipamento do tipo Funil de Berlese-Tullgren modificado para extração dos ácaros. O material extraído foi triado, os ácaros foram separados por ordem, sendo os Gamasina montados em lâminas de microscopia. Em seguida, os Gamasina foram identificados, sempre que possível, até o nível de espécie. Os resultados deste estudo demonstraram que o grupo de ácaros edáficos mais abundante, para as quatro áreas de coleta, foi Oribatida (Sarcoptiformes), representando 73,5% dos ácaros coletados. Os Gamasina foram o segundo grupo mais encontrado (19%). Dentre os Gamasina foram encontradas 12 famílias, 35 gêneros e 50 morfoespécies, com destaque para Ologamasidae, representando 33,9% dos Gamasina coletados, seguida de Blattisociidae (18,3%), Laelapidae (13,2%) e Phytoseiidae (11,8%). No fragmento de vegetação natural foram coletados cerca de 52% dos Gamasina, com 25% no cultivo de mangueira, 19% na soja e 4% no milho. A área de vegetação natural também foi a que apresentou maior diversidade de gêneros e morfoespécies seguido pelo cultivo de mangueiras, soja e milho. Nesse estudo também foram encontradas novas espécies para ciência e até um novo gênero, Ologamasidae n. gen. n. sp., que é descrito baseado na morfologia de fêmeas e machos adultos coletados no fragmento de Mata Atlântica. Esse estudo demonstra que o impacto da ação antrópica afeta a comunidade de ácaros edáficos qualitativa e quantitativamente, ou seja, nas áreas de cultivo agrícola obteve-se menor diversidade e abundância de Gamasina.
In Brazil, studies aimed to evaluate the diversity and abundance of edaphic predatory mites, such as the Gamasina (Mesostigmata), are still incipient, focusing mainly on areas of natural vegetation. However, understanding the impact of agriculture on these organisms is important in terms of preserving biodiversity and assessing the sensitivity of these individuals to agricultural managements. In addition, knowing the diversity of these soil mites is the first step in prospecting for new biological control agents. Thus, the objective of this study was to determine and compare the diversity and abundance of edaphic mite species present in a fragment of Atlantic Forest and three agricultural crops, in Jaboticabal, state of São Paulo, with an emphasis on Gamasina. Soil and litter (when present) were collected bi-monthly, between August 2015 and June 2017. Four areas were evaluated: a fragment of Atlantic Forest, corn, soybean and mango crops. Each sample consisted on ten random sampling points. In the laboratory, the samples were placed in a modified Berlese-Tullgren funnel for the extraction of mites. The extracted material was screened and the mites were separated in order, the Gamasina being mounted on microscopic slides. Then were identified, when possible, to species level. The results of this study showed that Oribatida (Sarcoptiforme) was the most abundant mite collected, representing 73.5% of total miltes, for the four areas. Gamasina were the second most abundant group (19%). Among the Gamasina, 12 families, 35 genera and 50 morphospecies were found, mainly Ologamasidae, representing 33.9% of the Gamasina collected, followed by Blattisociidae (18.3%), Laelapidae (13.2%) and Phytoseiidae (11, 8%). In the natural vegetation fragment, about 52% of the Gamasina were collected, 25% in mango culture, 19% in the soybean area and 4% in the corn area. The area of natural vegetation was also the one that presented greater diversity of genera and morphospecies followed by the cultivation of mango, soybean and corn. In this study new species were also found for science and even a new genus, Ologamasidae n. gen. n. sp., which is described based on the morphology of adult females and males collected in the Atlantic Forest fragment. This study demonstrates that the impact of anthropic action affects the community of soil mites qualitatively and quantitatively, that is, in the agricultural cultivation areas, there was less diversity and abundance of Gamasina.
134530/2015-2
Oliveira, Daniel Chiaradia. "Níveis de ocorrência do ácaro Aceria guerreronis Keifer e de outros ácaros (Acari) a este associados no estado de São Paulo". Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/11/11146/tde-09022011-102411/.
Texto completoAceria guerreronis Keifer is a pest of coconut in many countries. Colonies of this mite, also called the coconut mite, are mainly found underneath the bracts of young fruits, where they feed on meristematic tissues, often causing premature fruit drop. The aim of this study was to estimate the level of occurrence of A. guerreronis and other mites associated with it, to evaluate the possible role of predatory mites in controlling this mite. Samples were collected in July and December 2009 and April 2010 from 2 plantations of each of the following municipalities of São Paulo State: Cedral, Mirandópolis, Riolândia and Tupã (northwest), and Peruíbe (coast side). In each field, each sample consisted of 10 young fruits, 30 leaves and 5 spikelets of inflorescences, taken from each of 5 plants; in addition, up to 10 aborted fruits were also collected from each field, when present. Mites were found in all plant structures sampled; predominant mites were phytophagous, which accounted for 98.4% of the species collected; the remaining mites, included in the groups designated as \"predominantly predatory\" and \"of varied feeding habit\" accounted for 0.7 and 0.9% of the total, respectively. The average density of A. guerreronis (110,0 mites per fruit) accounted for approximately one tenth of the levels commonly reported in northeast Brazil. The main predators were Proctolaelaps bulbosus Moraes, Reis & Gondim Jr. and Proctolaelaps bickleyi (Bram), on fruits; Iphiseiodes zuluagai Denmark & Muma e Euseius citrifolius Denmark & Muma, on leaflets; E. citrifolius, P. bickleyi and Typhlodromalus peregrinus (Muma), on the inflorescences; and P. bulbosus and P. bickleyi on aborted fruits; these however were always found at low levels (not more than 2 per 100 fruits, 4 per 100 leaflets, 3 per 100 spikelets and 5 per 10 aborted fruit). Neoseiulus baraki (Athias-Henriot) and Neoseiulus paspalivorus (De Leon), two major predators of A. guerreronis in the northeast and in other countries, were not found. The results do not suggest that the low levels of A. guerreronis in São Paulo are due to the action of natural enemies, but they are at least partly due to climatic conditions prevailing during the year in the region where the study was conducted.
Libros sobre el tema "Plant mites"
Saito, Yutaka, ed. Plant Mites and Sociality. Tokyo: Springer Japan, 2010. http://dx.doi.org/10.1007/978-4-431-99456-5.
Texto completoPlant mites of India, handbook. Calcutta: Zoological Survey of India, 1985.
Buscar texto completoUeckermann, E. A. Eriophyoid mites: Progress and prognoses. Editado por European Association of Acarologists. Meeting. Dordrecht: Springer, 2010.
Buscar texto completoMallik, B. Bibliography of plant feeding mites of India. Bangalore: All India Network Project on Agricultural Acarology, Dept. of Entomology, University of Agricultural Sciences, 2003.
Buscar texto completoManson, D. C. M. A list of New Zealand mites and their host plants. Wellington, NZ: DSIR Science Information Publishing Centre, 1987.
Buscar texto completoMites: Ecology, evolution, and behaviour. Sydney: University of New South Wales Press, 1999.
Buscar texto completoTalhouk, Abdul Mon'im S. Insects & mites injurious to crops in Middle Eastern countries. 2a ed. Beirut, Lebanon: American University of Beirut Press, 2002.
Buscar texto completoZhang, Zhi-Qiang. Mites of greenhouses: Identification, biology, and control. Cambridge, MA: CABI Pub., 2003.
Buscar texto completoAkimov, I. A. Biologicheskie osnovy vredonosnosti akaroidnykh kleshcheĭ. Kiev: Nauk. dumka, 1985.
Buscar texto completoSuguiyama, Luis F. The economic importance of cotton insects and mites. Washington, D.C. (1301 New York Ave., NW, Washington 20005-4700): U.S. Dept. of Agriculture, Economic Research Service, 1988.
Buscar texto completoCapítulos de libros sobre el tema "Plant mites"
Butter, N. S. "Mites". En Insect Vectors and Plant Pathogens, 291–302. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2018]: CRC Press, 2018. http://dx.doi.org/10.1201/9780429503641-9.
Texto completoPetanović, Radmila y Malgorzata Kielkiewicz. "Plant–eriophyoid mite interactions: cellular biochemistry and metabolic responses induced in mite-injured plants. Part I". En Eriophyoid Mites: Progress and Prognoses, 61–80. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9562-6_4.
Texto completoMorgan, Lynette. "Plant health, plant protection and abiotic factors." En Hydroponics and protected cultivation: a practical guide, 170–95. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0010.
Texto completoMorgan, Lynette. "Plant health, plant protection and abiotic factors." En Hydroponics and protected cultivation: a practical guide, 170–95. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0170.
Texto completoRobinson, R. W. "Genetic Resistance in the Cucurbitaceae to Insects and Spider Mites". En Plant Breeding Reviews, 309–60. Oxford, UK: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470650011.ch9.
Texto completoPetanović, Radmila y Malgorzata Kielkiewicz. "Plant–eriophyoid mite interactions: specific and unspecific morphological alterations. Part II". En Eriophyoid Mites: Progress and Prognoses, 81–91. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-9562-6_5.
Texto completoGuermonprez, Hélène, Elizabeth Hénaff, Marta Cifuentes y Josep M. Casacuberta. "MITEs, Miniature Elements with a Major Role in Plant Genome Evolution". En Plant Transposable Elements, 113–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31842-9_7.
Texto completoVeerman, A. "Physiological aspects of diapause in plant-inhabiting mites". En The Acari, 245–65. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3102-5_17.
Texto completoMaurer, Veronika, Erika Perler y Felix Heckendorn. "In vitro efficacies of oils, silicas and plant preparations against the poultry red mite Dermanyssus gallinae". En Control of Poultry Mites (Dermanyssus), 31–41. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2731-3_5.
Texto completoSkoracka, Anna, Lincoln Smith, George Oldfield, Massimo Cristofaro y James W. Amrine. "Host-plant specificity and specialization in eriophyoid mites and their importance for the use of eriophyoid mites as biocontrol agents of weeds". En Eriophyoid Mites: Progress and Prognoses, 93–113. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-9562-6_6.
Texto completoActas de conferencias sobre el tema "Plant mites"
Tretiacova, Tatiana, Vladimir Todiras y Ana Gusan. "Produs nou biorațional pentru combaterea dăunătorilor în spaţii protejate". En VIIth International Scientific Conference “Genetics, Physiology and Plant Breeding”. Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2021. http://dx.doi.org/10.53040/gppb7.2021.94.
Texto completoPalevsky, Eric. "Plant feeding pest and predatory mites, from lab to field, implications for IPM". En 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.105441.
Texto completoVidovic, Biljana. "Eriophyid mites in weed biological control programs: A review of their host plant specialization and behavior". En 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.115124.
Texto completoJohnson, Timothy B. "Development of two novel microbes for management of insects, mites, and plant parasitic nematodes in North and Central America and Europe". En 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.109032.
Texto completoZubir, S. S., F. R. Razali, Q. Norhisham y Y. Rahman. "Zero food miles super-circuit". En RAVAGE OF THE PLANET III. Southampton, UK: WIT Press, 2011. http://dx.doi.org/10.2495/rav110161.
Texto completoFan, LinSheng y JianXin Deng. "Application of lean logistics in engine plant". En 2016 Manufacturing & Industrial Engineering Symposium (MIES). IEEE, 2016. http://dx.doi.org/10.1109/mies.2016.7779984.
Texto completoDagnino, Aldo. "An Intelligent Concrete Mix Design System". En ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/eim-9013.
Texto completoProchazka, P. P. y V. Dolezel. "Separation of salt and sweet waters in an area of former mines". En RAVAGE OF THE PLANET 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/rav060531.
Texto completoCrucean, Stefan. "Principalii dăunători ale culturii nucifere din clasa Arachnida și manifestarea efectelor negative ale acestora". En International Scientific Symposium "Plant Protection – Achievements and Prospects". Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2020. http://dx.doi.org/10.53040/9789975347204.04.
Texto completoMentch, Kirk E. y Gregory M. Kemper. "Challenges of a new quarry five miles from a plant". En 2018 IEEE-IAS/PCA Cement Industry Conference (IAS/PCA). IEEE, 2018. http://dx.doi.org/10.1109/citcon.2018.8373096.
Texto completoInformes sobre el tema "Plant mites"
Houck, Marilyn, Uri Gerson y Robert Luck. Two Predator Model Systems for the Biological Control of Diaspidid Scale Insects. United States Department of Agriculture, junio de 1994. http://dx.doi.org/10.32747/1994.7570554.bard.
Texto completoNeedham, Glenn R., Uri Gerson, Gloria DeGrandi-Hoffman, D. Samatero, J. Yoder y William Bruce. Integrated Management of Tracheal Mite, Acarapis woodi, and of Varroa Mite, Varroa jacobsoni, Major Pests of Honey Bees. United States Department of Agriculture, marzo de 2000. http://dx.doi.org/10.32747/2000.7573068.bard.
Texto completoHeinz, Kevin, Itamar Glazer, Moshe Coll, Amanda Chau y Andrew Chow. Use of multiple biological control agents for control of western flower thrips. United States Department of Agriculture, 2004. http://dx.doi.org/10.32747/2004.7613875.bard.
Texto completoDick, Warren, Yona Chen y Maurice Watson. Improving nutrient availability in alkaline coal combustion by-products amended with composted animal manures. United States Department of Agriculture, 2002. http://dx.doi.org/10.32747/2002.7587240.bard.
Texto completoDick, Warren, Yona Chen y Maurice Watson. Improving nutrient availability in alkaline coal combustion by-products amended with composted animal manures. United States Department of Agriculture, diciembre de 2006. http://dx.doi.org/10.32747/2006.7695883.bard.
Texto completoShamblin, Robert, Kevin Whelan, Mario Londono y Judd Patterson. South Florida/Caribbean Network early detection protocol for exotic plants: Corridors of invasiveness. National Park Service, julio de 2022. http://dx.doi.org/10.36967/nrr-2293364.
Texto completoPerl-Treves, Rafael, Linda Walling y Victoria Soroker. One Host, Two Associated Pests: Responses of Tomato Plants to Whiteflies and Broad Mites. United States Department of Agriculture, octubre de 2010. http://dx.doi.org/10.32747/2010.7593388.bard.
Texto completoСавосько, Василь Миколайович, Юлія Бєлик y Юрій Васильович Лихолат. Ecological and Geological Determination of the Initial Pedogenesis on Devastated Lands in the Kryvyi Rih Iron Mining & Metallurgical District (Ukraine). Journ. Geol. Geograph. Geoecology, 2019. http://dx.doi.org/10.31812/123456789/3643.
Texto completoPerkins, Dustin. Invasive exotic plant monitoring in Capitol Reef National Park: 2020 and 2021 field seasons. National Park Service, agosto de 2022. http://dx.doi.org/10.36967/2294094.
Texto completoMichel Jr., Frederick C., Harry A. J. Hoitink, Yitzhak Hadar y Dror Minz. Microbial Communities Active in Soil-Induced Systemic Plant Disease Resistance. United States Department of Agriculture, enero de 2005. http://dx.doi.org/10.32747/2005.7586476.bard.
Texto completo