Tesis sobre el tema "Plant development and stress response"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Plant development and stress response".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Cao, Jingyi. "CELL TYPE-SPECIFIC ALTERNATIVE POLYADENYLATION IN ARABIDOPSIS DURING DEVELOPMENT AND STRESS RESPONSE". Miami University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=miami1492702815819455.
Texto completoO'Hara, L. E. "The role of trehalose 6-phosphate in the regulation of plant development and stress response". Thesis, University College London (University of London), 2014. http://discovery.ucl.ac.uk/1427275/.
Texto completoPirone, Claudia <1987>. "Disentangling the Role of Transitory Starch Storages in Plant Development and in Osmotic Stress Response". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7580/1/TESI_DOTTORATO_Claudia_Pirone.pdf.
Texto completoPirone, Claudia <1987>. "Disentangling the Role of Transitory Starch Storages in Plant Development and in Osmotic Stress Response". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7580/.
Texto completoChávez, Martínez Ángel de Jesús. "Altered Levels of Glycosylated Sterols Affect Tomato Development and Stress Response". Doctoral thesis, Universitat de Barcelona, 2020. http://hdl.handle.net/10803/673610.
Texto completoPomeranz, Marcelo Christian. "The Role of the AtTZF1 Tandem CCCH Zinc Finger Gene in Plant Growth, Development, and Stress Response". The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1299525118.
Texto completoLitholdo, Junior Celso Gaspar. "Characterisation of microRNA gene families in Arabidopsis". Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/12056.
Texto completoPrenger, Jessica J. "Development of a Plant Response Feedback Irrigation Control System Based on Crop Water Stress Index and Evapotranspiration Modeling". The Ohio State University, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=osu1419601844.
Texto completoFrietsch, Sabine. "The role of Cyclic Nucleotide-Gated Channels (CNGC) in plant development and stress responses in Arabidopsis thaliana". [S.l. : s.n.], 2006.
Buscar texto completoDavies, Huw Alun. "A family of glycoproteins from the petioles of Brassica campestris with potential roles in plant development and stress responses". Thesis, University of East Anglia, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317996.
Texto completoZheng, Bo. "Characterisation of the Clp Proteins in Arabidopsis thaliana". Doctoral thesis, Umeå : Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-99.
Texto completoSteinebrunner, Iris, Uta Gey, Manuela Andres, Lucila Garcia y Daniel H. Gonzalez. "Divergent functions of the Arabidopsis mitochondrial SCO proteins: HCC1 is essential for COX activity while HCC2 is involved in the UV-B stress response". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-147367.
Texto completoMadeo, M. "MEDICINAL PLANT RESPONSE TO ABIOTIC AND BIOTIC STRESS". Doctoral thesis, Università degli Studi di Milano, 2010. http://hdl.handle.net/2434/150114.
Texto completoHernández, García Jorge. "Ancestral Functions of DELLA Proteins". Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/169370.
Texto completo[CA] Les plantes necessiten acomodar el seu creixement a les condicions ambientals. Amb l'objectiu d'ajustar el seu desenvolupament als senyals externs, usen una sèrie de mecanismes moleculars. Un d'aquests són les rutes de senyalització hormonal, que participen en integrar la informació externa amb programes de desenvolupament propis. Una de les hormones més rellevants en la biologia vegetal són les giberel·lines (GAs). La senyalització per GAs s'inicia amb la percepció de l'hormona a través del receptor GID1, i continua per la degradació de les reguladores transcripcionals DELLA. No obstant això, només les plantes vasculars tenen un sistema complet de percepció de GAs. Entendre la rellevància de la senyalització per GAs requereix estudiar com es va assemblar la ruta i quines funcions atribuïdes a les GAs estaven ja codificades en les proteïnes DELLA ancestrals. Ací mostrem mitjançant anàlisis filogenètiques i bioquímiques que les proteïnes DELLA van emergir inequívocament en un ancestre comú de les plantes terrestres, i que el reclutament de les DELLAs al mòdul de percepció de GAs depén de la presència d'un domini de transactivació conservat que va ser co-optat pel receptor GID1 ancestral per a actuar com un degró dependent de GAs. Aquest domini de transactivació sembla regular la co-activació transcripcional de gens concrets per les DELLAs en totes les plantes terrestres mitjançant el reclutament de complexos Mediator a través de la seua subunitat MED15. Finalment, ens hem centrat en entendre les funcions de les proteïnes DELLA en briòfites, un clade sense senyalització per GAs. Hem descobert el rol de la DELLA de Marchantia polymorpha com a coordinadora entre les respostes de creixement i estrés, suggerint que aquesta funció estava ja codificada en proteïnes DELLA de l'ancestre comú de plantes terrestres i s'ha mantingut durant més de 450 milions d'anys.
[EN] Plants need to accommodate their growth habits to environmental conditions. For this aim, several mechanisms are used to adjust developmental responses to exogenous signals. Among them, hormonal signalling pathways participate by integrating external information with endogenous programs. One of the most relevant hormones in plant biology are gibberellins (GAs). GA signalling involves perception of the hormone by the GA receptor GID1 and subsequent degradation of the DELLA transcriptional regulators. However, only vascular plants possess a full GA perception system. Understanding the relevance of GA signalling requires elucidating how this pathway was assembled and which of the functions attributed to GAs were encoded in the ancestral DELLA proteins. Here we show by phylogenetic and biochemical analyses that DELLA proteins emerged unequivocally in a land plant common ancestor and that their recruitment into the GA-perception module relies in the presence of a conserved transactivation domain co-opted by an ancestral GID1 receptor to act as a GA-dependent degron. Moreover, this transactivation domain seems to regulate DELLA-dependent transcriptional co-activation of selected target genes by recruitment of Mediator complexes through the MED15 subunit in all land plants. Finally, we have focused on understanding the functions of DELLA proteins in bryophytes, a clade with no GA signalling. We have uncovered the role of Marchantia polymorpha DELLA protein as a coordinator between growth and stress responses, suggesting that this function was already present in the DELLA protein of a land plant common ancestor and has been maintained for over 450 millions of years.
La realización de esta tesis doctoral ha sido posible gracias a una ayuda para contratos predoctorales FPU (FPU15/01756), dos Ayudas para Estancias Breves FPU (EST17/00237, IPS2, París; EST18/00400, WUR, Wageningen), una ayuda EMBO Short-Term (ASTF 8239, WUR, Wageningen), y la financiación MSCA H2020 RISE para desplazamientos en el contexto del proyecto SIGNAT (RISE Action 644435, PUC, Santiago). Así mismo, el grueso del trabajo experimental incluido ha sido financiado por el proyecto HUBFUN del MINECO (BFU2016-80621-P)
Hernández García, J. (2021). Ancestral Functions of DELLA Proteins [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/169370
TESIS
Atkinson, Nicola Jane. "Plant molecular response to combined drought and nematode stress". Thesis, University of Leeds, 2011. http://etheses.whiterose.ac.uk/2131/.
Texto completoNalam, Vamsi J. "9-Lipoxygenase Oxylipin Pathway in Plant Response to Biotic Stress". Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc115127/.
Texto completoWang, Lijun. "Physiological response of Kentucky bluegrass under salinity stress". DigitalCommons@USU, 2013. https://digitalcommons.usu.edu/etd/1492.
Texto completoDel, Bianco Marta. "Context specificity of auxin response in plant development". Thesis, University of Leeds, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610902.
Texto completoWANG, DAN. "Effects of CO2 and Nitrogen on Plant Response to Heat Stress". University of Toledo / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1225299873.
Texto completoWang, Dan. "Effects of CO₂ and nitrogen on plant response to heat stress /". Connect to full text in OhioLINK ETD Center, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1225299873.
Texto completoTypescript. "Submitted as partial fulfillment of the requirements for The Doctor of Philosophy Degree in Biology (Ecology-track)." Bibliography: leaves 6-9, 29-35, 71-78, 111-118, 149-153.
Milani, Manuela. "Cell stress response and hypoxia in breast cancer". Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:74d3bf91-9888-4e9e-b5e1-7d5d2d476174.
Texto completoSun, Hong. "The effect of hydrodynamic stress on plant embryo development". Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33945.
Texto completoLi, Xiaoqing. "Plant root development and hormone signalling during drought stress". Thesis, Lancaster University, 2016. http://eprints.lancs.ac.uk/79357/.
Texto completoMendu, Venugopal. "ROLES OF MICRORNAS IN PLANT ABIOTIC STRESS, DEVELOPMENT AND VIRAL INFECTION". UKnowledge, 2008. http://uknowledge.uky.edu/gradschool_diss/663.
Texto completoCook, Ritchard Matthew. "Changes in gene expression in response to abscisic acid and environmental stress". Thesis, University of the West of England, Bristol, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293362.
Texto completoKarunaratne, Asha Sajeewani. "Modelling the response of Bambara groundnut (Vigna subterranea (L.) Verdc) for abiotic stress". Thesis, University of Nottingham, 2009. http://eprints.nottingham.ac.uk/10840/.
Texto completoWeerathunga, Arachchilage Achira S. "A Novel Transcription Factor in Arabidopsis thaliana Abiotic Stress Response". ScholarWorks@UNO, 2015. http://scholarworks.uno.edu/td/2114.
Texto completoMoody, Steven James. "MAP kinase activity in the wound response of tomato". Thesis, University of York, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325646.
Texto completoDoroodian, Paymon. "Overexpression of Differentiation and Greening-Like Alters Stress Response of Arabidopsis thaliana". Ohio University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1596227767908937.
Texto completoDong, Shaowei. "Expression of duplicated genes in a polyploid plant in response to abiotic stress". Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/13465.
Texto completoRouse, Joshua Hatley. "Measurements of plant stress in response to CO2 using a three-CCD imager". Thesis, Montana State University, 2008. http://etd.lib.montana.edu/etd/2008/rouse/RouseJ1208.pdf.
Texto completoNjaci, Isaac. "The role of MicroRNAs in stress response in the resurrection plant Tripogon loliiformis". Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/93740/1/Isaac_Njaci_Thesis.pdf.
Texto completoCurtis, Steven. "The Development of the Stress-Response Scale for Adolescents". DigitalCommons@USU, 1989. https://digitalcommons.usu.edu/etd/5990.
Texto completoKhan, Masud Ahmad. "The Effects of Calcium on the Response of Snapbean to Sodium-Induced Stress". DigitalCommons@USU, 1991. https://digitalcommons.usu.edu/etd/3486.
Texto completoMartinho, Cláudia Sofia dos Santos. "Regulation of gene expression by SnRK1 kinases and miRNAs during the plant stress response". Doctoral thesis, Universidade Nova de Lisboa. Instituto de Tecnologia Química e Biológica, 2013. http://hdl.handle.net/10362/12032.
Texto completoPlants are constantly challenged by unfavorable conditions like water scarcity, extreme temperatures and salinity that constrain their growth. One of the established consequences of such environmental stress is a decrease in cellular energy levels. This energy deficit activates the SnRK1 (Snf1-Related protein Kinase1) kinase, which thereby triggers a major transcriptional reprogramming aimed at restoring homeostasis. Plants deficient in the SnRK1 pathway are more susceptible to stress, highlighting the importance of this kinase for acclimation and survival.(...)
Song, Yang. "Analysis of heat stress on pollen development in Arabidopsis thaliana". Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/39826/.
Texto completoAghdaei, Seyed Reza Tabaei. "Studies of stress responses in Gramineae (Poaceae) using biotechnological methods". Thesis, University of Newcastle Upon Tyne, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336753.
Texto completoRobertson, Marta. "Epigenetic Response to Challenging Environmental Conditions". Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6939.
Texto completoTao, Kin-pong y 涂健邦. "Tspyl2 is involved in cellular stress response and neuronal development". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B44531527.
Texto completoChoudhury, Feroza Kaneez. "Rapid Metabolic Response of Plants Exposed to Light Stress". Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1157543/.
Texto completoKaspar, Kerrie L. "Pigmented potatoes on health : effect on oxidative stress, inflammatory damage and immune response in humans, sensory attributes, and nutrient retention during processing". Pullman, Wash. : Washington State University, 2009. http://www.dissertations.wsu.edu/Dissertations/Spring2009/K_Kaspar_040809.pdf.
Texto completoGouws, Liezel Michelle y Jens Kossmann. "The molecular analysis of the effects of lumichrome as a plant growth promoting substance". Thesis, Stellenbosch : University Stellenbosch, 2009. http://hdl.handle.net/10019.1/4825.
Texto completoDissertation presented for the degree of Doctor of Philosophy at Stellenbosch University
Embargo(30)lift date 2009-12-31 plt 2010
ENGLISH ABSTRACT: Through powerful signal molecules, rhizobacteria affect fundamental processes in plants. In recent years, a number of novel rhizobial molecules have been identified that positively affect plant growth and development. Previous studies have shown that Sinorhizobium meliloti, which form symbiotic relationships with leguminous plants, increases CO2 availability by enhancing root respiration in alfalfa. The active compound was identified as lumichrome, a previously unrecognized rhizosphere signal molecule that has been shown to promote plant growth in various studies. Lumichrome is a common breakdown product of riboflavin and produced by both chemical and biological factors. Various studies on lumichrome have proven its growth promoting effect in the interaction with plants. The mechanism through which lumichrome increases plant growth remains to be clarified. This study provides new insight into the molecular effects of the plant growth promoter lumichrome on the root metabolism of plants. The main aim of the work presented in this thesis was to investigate the molecular mechanism of the plant growth promoting substance lumichrome in the roots of the model plants Lotus japonicus and Solanum lycopersicon (tomato). To asses the impact of lumichrome on the root metabolism of Lotus japonicus and tomato and identify key genes involved in the growth stimulation, a comprehensive profile of differentially expressed genes, proteins and metabolites was compiled. As the effects of lumichrome as a plant growth promoter have not previously been tested on Lotus japonicus and tomato, basic growth studies were completed to determine if lumichrome indeed elicits plant growth at nanomolar concentrations, as was proven in numerous previous studies. Both Lotus japonicus and tomato showed significant increases in root biomass when treated with 5 nM of lumichrome. The treatment with lumichrome caused complex changes in gene expression. Generally, transcript profiling showed that the categories that were predominantly affected by lumichrome in both Lotus and tomato, were genes associated with RNA regulation of transcription and signaling, protein synthesis/degradation/modification and stress and defence. Proteomic studies revealed that the majority of the differentially expressed proteins were down-regulated. Lumichrome seems to largely influence proteins involved in protein folding and down-regulate proteins involved in glycolysis. Proteomics studies revealed that GS1 (Lotus) and GAPDH (Lotus and tomato) were present in lower abundance in lumichrome treated roots, therefore targeted analysis utilizing northern blots, western blots and the measurement of enzyme activities were completed to determine and verify their specific role in the lumichrome mediated growth promotion. The results indicated that GAPDH and GS1 seem to be under post-translational modification. The influence of lumichrome on the metabolome of Lotus roots was immense, however minute in tomato roots. The knowledge gained in the parallel analyses of both Lotus japonicus and tomato aided us in finding key genes involved in the growth stimulation. Overall, one of the most significant observations was that for the first time to our knowledge, six genes related to defence and pathogen responses were identified that are concurrently expressed in both Lotus and tomato. Through identifying a small number of genes involved in mediating the growth stimulation, these can be used for their functional analysis in the future, using reverse genetics to provide more insight into the molecular mechanisms that are triggered by lumichrome as a plant growth promoter.
AFRIKAANSE OPSOMMING: Deur kragtige sein-molekules, beïnvloed rhizobakterieë basiese prosesse in plante. In die laaste jare is ʼn aantal nuwe molekules, afkomstig van rhizobakterieë, geidentifiseer wat plantgroei en ontwikkeling positief beïnvloed. Voorafgaande studies het bewys dat Sinorhizobium meliloti, wat simbiotiese verhoudings met peulplante aangaan, die beskikbaarheid van CO2 vermeerder deur wortel respirasie in alfalfa te verhoog. Die aktiewe komponent is as lumikroom geidentifiseer, 'n vroeë onerkenbare risosfeer sein-molekule, wat deur vorige studies bewys is dat dit plantgroei stimuleer. Lumikroom is ʼn algemene afbreekproduk van riboflavin en word geproduseer deur chemiese en biologiese faktore. Verskeie studies op lumikroom het bewys dat dit 'n groei stimuleerende effek het op die groei van plante as dit daarmee in wisselwerking tree. Die meganisme waarmee lumikroom plante groei verhoog, is nog nie opgeklaar nie. Hierdie studie verleen nuwe insigte in die molekulêre effekte van die plantgroei stimuleerende molekuul lumikroom op die wortel metabolisme van plante. Die hoofdoel van die werk wat voorgestel word in hierdie tesis, was om die molekulêre meganisme van die plantgroei stimuleerende stof, genaamd lumikroom, in die wortels van die model plante Lotus japonicus en Solanum lycopersicon (tamatie), te ondersoek. Om die uitwerking van lumikroom op die wortel metabolisme van Lotus japonicus en tamatie te bepaal, asook sleutelgene wat betrokke is by die groei stimulasie te identifiseer, is 'n breedvoerige profiel van differensiële uitgedrukte gene, proteïne en metaboliete saamgestel. Die effekte van lumikroom as 'n plantgroei stimuleerende stof is nog nooit op Lotus japonicus en tamatie getoets nie. Om díe rede is eers basiese plantgroei studies gedoen, om vas te stel of lumikroom inderdaad plantgroei teen nanomolare konsentrasies stimuleer, soos in vele voorafgaande studies bevestig is. Beide Lotus japonicus en tamatie het aansienlike verhogings in wortel biomassa getoon as dit met 5 nM lumikroom behandel is. Die behandeling van plante met lumikroom het komplekse veranderinge in geen-uitdrukking veroorsaak. Oor die algemeen het die transkrip-profiele gewys dat die kategorieë wat die meeste geraak is deur lumikroom behandeling, in beide Lotus en tamatie, gene was wat geassosieer word met RNS regulasie van transkripsie en sein-netwerke, proteïen sintese/degradasie/wysiging en stres en verdedigings prosesse in plante. Proteïen studies het gewys dat daar 'n daling in die meerderheid van die proteïen vlakke was wat differensieël uitgedruk was. Dit blyk dat lumikroom in 'n groot mate proteïene beïnvloed wat betrokke is by proteïen-vouing en veroorsaak dat proteïen vlakke van glikolitiese ensieme daal. Proteïen studies het gewys dat GS1 en GAPDH in laer vlakke teenwoordig was in lumikroom behandelde plante en daarom is 'n meer doelgerigte analiese gedoen deur gebruik te maak van "northern blot", "western blot" en deur die ensiem aktiwiteite te meet om hulle spesifieke rol in die lumikroom bemiddelde groei vas te stel. Die resultate wys daarop dat GAPDH en GS1 mag onder die invloed van na-translasionele verandering wees. Die invloed van lumikroom op die metabolietvlakke was groot in Lotus wortels, maar dit het minder van 'n effek gehad op tamatie wortels. Die kennis wat opgedoen is deur die paralelle analiese van beide Lotus japonicus en tamatie plante help ons om sleutel gene wat betrokke is by groeistimulasie te identifiseer. Een van die betekenisvolste waarnemings van hierdie studie was dat vir die eerste keer, sover ons kennis strek, ses gene wat almal betrekking het tot verdediging en patogene-reaksies, geidentifiseer is wat gelyktydig in beide Lotus en tamatie uitgedruk word. Deur 'n klein aantal gene te identifiseer, wat betrokke is by groeistimulasie, kan die gene in die toekoms vir funksionele analieses gebruik word deur van keerkoppeling-genetika gebruik te maak. Daardeur sal meer insig verkry word in die molekulêre meganisme wat deur lumikroom as 'n plantgroei stof veroorsaak word.
Schäfer, Heinrich [Verfasser]. "The role of the stringent response and Spx in stress response and thermotolerance development / Heinrich Schäfer". Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2019. http://d-nb.info/1204459150/34.
Texto completoJaafar, Hawa Zulkifli. "Impact of environmental stress on reproductive development in sweet pepper (Capsicum annuum L.)". Thesis, University of Nottingham, 1995. http://eprints.nottingham.ac.uk/11690/.
Texto completoAudley, Matthew David. "Understanding the role of gibberellin signalling in wheat anther development during heat stress". Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/39335/.
Texto completoLiang, Mingxiang. "Physiological and Molecular Function of HAP3b in Flowering Time Regulation and Cold Stress Response". DigitalCommons@USU, 2010. https://digitalcommons.usu.edu/etd/575.
Texto completoSanford, Sarah Grace. "Heterogeneous Stress Response in a Clonal Invader (Imperata cylindrica): Implications for Management". Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/3330.
Texto completoCARAMANICO, LEILA. "STUDY OF GRAPEVINE ROOTSTOCK RESPONSE TO WATER STRESS". Doctoral thesis, Università degli Studi di Milano, 2020. http://hdl.handle.net/2434/707586.
Texto completoKornfeld, Ari. "The Role of Alternative Oxidase (AOX) in Plant Stress: do Plants Increase the Activity of AOX in Response to Nutrient Stress Under Field Conditions?" Thesis, University of Canterbury. School of Biological Sciences, 2012. http://hdl.handle.net/10092/7009.
Texto completoSegu, Rifai. "Demand-Response Management of a District Cooling Plant of a Mixed Use City Development". Thesis, KTH, Kraft- och värmeteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-96539.
Texto completo