Literatura académica sobre el tema "Plant conservation – Western Australia"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Plant conservation – Western Australia".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Plant conservation – Western Australia"
Taylor, Gary S. y Melinda L. Moir. "Further evidence of the coextinction threat for jumping plant-lice: three new Acizzia (Psyllidae) and Trioza (Triozidae) from Western Australia". Insect Systematics & Evolution 45, n.º 3 (24 de julio de 2014): 283–302. http://dx.doi.org/10.1163/1876312x-00002107.
Texto completoMorris, K. D. "The status and conservation of native rodents in Western Australia". Wildlife Research 27, n.º 4 (2000): 405. http://dx.doi.org/10.1071/wr97054.
Texto completoNorton, Sally L., Colin K. Khoury, Chrystian C. Sosa, Nora P. Castañeda-Álvarez, Harold A. Achicanoy y Steven Sotelo. "Priorities for enhancing the ex situ conservation and use of Australian crop wild relatives". Australian Journal of Botany 65, n.º 8 (2017): 638. http://dx.doi.org/10.1071/bt16236.
Texto completoTwigg, Laurie. "Fluoroacetate-bearing vegetation: can it reduce the impact of exotic mammals on wildlife conservation?" Pacific Conservation Biology 17, n.º 4 (2011): 299. http://dx.doi.org/10.1071/pc110299.
Texto completoByrne, M. "Phylogeography provides an evolutionary context for the conservation of a diverse and ancient flora". Australian Journal of Botany 55, n.º 3 (2007): 316. http://dx.doi.org/10.1071/bt06072.
Texto completoKeighery, Greg J., Neil Gibson, Stephen van Leeuwen, Michael N. Lyons y Sue Patrick. "Biological survey and setting priorities for flora conservation in Western Australia". Australian Journal of Botany 55, n.º 3 (2007): 308. http://dx.doi.org/10.1071/bt06102.
Texto completoKEIGHERY, G. "Phytogeography, Biology and Conservation of Western Australian Epacridaceae". Annals of Botany 77, n.º 4 (abril de 1996): 347–56. http://dx.doi.org/10.1006/anbo.1996.0042.
Texto completoE. Davis Jr., William. "Environmental Biology". Pacific Conservation Biology 15, n.º 4 (2009): 303. http://dx.doi.org/10.1071/pc090303.
Texto completoHobbs, RJ y L. Atkins. "Fire-Related Dynamics of a Banksia Woodland in South-Western Western Australia". Australian Journal of Botany 38, n.º 1 (1990): 97. http://dx.doi.org/10.1071/bt9900097.
Texto completoGibson, N., G. J. Keighery, M. N. Lyons y B. J. Keighery. "Threatened plant communities of Western Australia. 2 The seasonal clay-based wetland communities of the South West". Pacific Conservation Biology 11, n.º 4 (2005): 287. http://dx.doi.org/10.1071/pc050287.
Texto completoTesis sobre el tema "Plant conservation – Western Australia"
Swarts, Nigel. "Integrated conservation of the rare and endangered terrestrial orchid Caladenia huegelii H.G. Reichb". University of Western Australia. School of Earth and Geographical Sciences, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0044.
Texto completoHorsnell, Tara Kathleen. "Quantifying thresholds for native vegetation to salinity and waterlogging for the design of direct conservation approaches". University of Western Australia. School of Environmental Systems Engineering, 2009. http://theses.library.uwa.edu.au/adt-WU2009.0082.
Texto completoHollick, Penelope Sarah. "Mycorrhizal specificity in endemic Western Australian terrestrial orchids (tribe Diurideae) : implications for conservation /". Hollick, Penelope Sarah (2004) Mycorrhizal specificity in endemic Western Australian terrestrial orchids (tribe Diurideae): implications for conservation. PhD thesis, Murdoch University, 2004. http://researchrepository.murdoch.edu.au/103/.
Texto completoBougoure, Jeremy J. "The role of mycorrhizal fungi in nutrient supply and habitat specificity of the rare mycoheterotrophic underground orchid, Rhizanthella gardneri". University of Western Australia. School of Plant Biology, 2009. http://theses.library.uwa.edu.au/adt-WU2009.0076.
Texto completoSutcliffe, Karen Elizabeth. "The conservation status of aquatic insects in south-western Australia". Murdoch University, 2003. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20040430.153605.
Texto completoSutcliffe, Karen. "The conservation status of aquatic insects in South-Western Australia /". Access via Murdoch University Digital Theses Project, 2003. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20040430.153605.
Texto completoNaude, Minette. "Fynbos riparian biogeochemistry and invasive Australian acacias". Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20325.
Texto completoENGLISH ABSTRACT: Riparian ecotones, transitional areas between upland terrestrial communities and aquatic ecosystems, are very dynamic and complex ecosystems with intrinsic ecological properties differing in spatial structure, function and temporal dynamics. Riparian habitats along rivers of the Mediterranean south-western Cape are sensitive to environmental change and particularly vulnerable to invasion by invasive alien plants (IAPs), especially nitrogen-fixing Acacia spp., and yet relatively little work has focused on how riparian ecosystems in this region respond to such stressors. The important roles that intact riparian vegetation play in maintaining ecosystem integrity and services have been increasingly highlighted as we acknowledge the degradation of these habitats. While the Working for Water (WfW) programme has been shown to be very successful in eradicating IAPs in riparian zones in the short-term, the extent to which riparian ecosystems recover following alien clearing activities remains poorly understood. The results presented in this study addressed several different aspects of riparian structure and function and acts as a steppingstone for guiding future research and management in riparian zones by adding to the evaluation of the success of clearing initiatives and restoration thereof. The aim of this study was to assess plant functional type (PFT) cover, soil physical and chemical properties, and selected biogeochemical processes in natural, Acacia- invaded and cleared riparian ecotones and associated non-riparian upland fynbos. Fieldwork was performed in mountain and foothill sections of six perennial river systems within the south-western Cape. Eleven sites of three categories were chosen: four natural sites (uninvaded); four moderate to highly invaded sites (predominantly A. mearnsii); and three cleared sites (a formerly invaded site that had been cleared more than 7 years prior to the study). Within each site, four to five replicate plots were established along each of three geomorphological zones (wet bank, dry bank, and upland fynbos). Seasonal soil samples were collected for a period of one year. Results from this study showed that PFT cover and composition, soil physical and chemical properties and rates of nitrogen (N) and phosphorus (P) mineralization differed amongst invasion status, between geomorphological zones and across seasons. Regarding most soil physical and chemical properties and indices N and P cycling, river floodplains (dry banks) were very similar to terrestrial uplands. Acacia spp. changes soil properties and affects plant functional attributes by i) enriching the system with N; ii) enhancing litter inputs; iii) altering soil physical properties; iv) changing the composition and reducing the cover of PFT; and v) enhancing P mineralization rates. Although measured soil physical and chemical properties and N and P mineralization rates were reduced to levels that were similar to or resembled the situation at natural areas, available inorganic N remained two times higher after more than seven years of clearance. Furthermore, cleared areas were characterized by sparse woody cover and a high cover of alien grasses. Correlations between soil silt and clay content and several soil properties measured in this and other studies indicates important linkages between soil texture and resource availability. Clearing Acacia spp. may initiate restoration of invaded riparian ecosystems, but changes in ecosystem function (e.g. elevated soil N availability) as a result of invasion may necessitate active restoration following the removal of the alien species. Active restoration under such conditions would be required to facilitate the restoration of cleared riparian communities. However, we still lack the mechanistic understanding around fynbos riparian recovery after clearing, as the success of restoration may depend on complex interaction and feedback cycles between plants and their physical environment. A greater comprehensive understanding of fynbos riparian ecological processes will not only improve the effectiveness of restoration initiatives by integrating science and management, but also advance the field of riparian ecology.
AFRIKAANSE OPSOMMING: Rivier oewerwal-areas, oorgang gebiede tussen aangrensende terrestriële gemeenskappe en akwatiese ekosisteme, is baie dinamiese en komplekse ekosisteme met intrinsieke ekologiese eienskappe wat verskil in struktuur, funksie (bv. biogeochemie siklusse) en temporale dinamika. Oewerhabitatte langs riviere van die Mediterreense suid-wes Kaap is sensitief vir omgewingsveranderinge en kwesbaar vir indringing deur uitheemse plante (bekend as “invasive alien plants” (IAPs)), veral stikstof-fiksering Acacia spp., en relatief min werk het nog gefokus op hoe ekosisteme in die streek reageer op sulke veranderinge in die omgewing. Die belangrike rol wat gesonde oewerwal plantegroei speel in die handhawing van ekosisteemdienste- en integriteit, is al hoe meer uitgelig soos ons die agteruitgang van hierdie habitat in ag neem. Terwyl die Werk vir Water (WvW)-program al dat baie suksesvol was in die uitwissing van IAPs in oewersones in die kort termyn, is die mate waarin oewer-ekostelsels herstel na skoonmaakaksies swak verstaan. Fynbos oewerwal-areas is grootliks ingeneem deur houtagtige IAPs, veral stikstof fiksering Acacia spp. (soos Acacia mearnsii). Die resultate wat in hierdie studie aangebied is, het verskillende aspekte van oewer- struktuur en funksie aangespreek en dien as middel vir toekomstige navorsing en bestuur van oewerwal ekosisteme deur by te dra tot die evaluering van die sukses van skoonmaak inisiatiewe en die herstelproses daarvan. Die doel van hierdie projek was om die moontlikhede vir herstel van fynbos owerwal-ekostelsels te evalueer deur middel van verskeie grond- fisiese en chemiese eienskappe; plant funksionele groep dekking (genoem ‘plant functional types’ (PFT)); en geselekteerde grond biogeochemie prosesse in natuurlike, Acacia- aangetaste, en skoongemaakte rivierstelsels en nabygeleë terrestriese areas te vergelyk. Veldwerk is gedoen in bergstroom en voetheuwel rivierseksies van ses standhoudende rivierstelsels in Suid-wes Kaap, Suid Afrika. Van uit hierdie geselekteerde rivierstelsels is elf studie areas van drie kategorieë (of indringing status) gekies: vier natuurlike areas (nie aangetas); vier gematig- tot hoogs aangetaste areas (hoofsaaklik A. meanrsii); en drie skoongemaakte areas (rivieroewers wat meer as sewe jaar van te vore skoongemaak is). Binne elke studie area was vier tot vyf soortgelyke persele gevestig by elke van drie breë geomorfologiese sones: naamlik nat-, droë en hoogliggende terrestriese fynbos. Seisoenale grondmonsters vir 'n tydperk van een jaar is geneem. Resultate van hierdie studie het getoon dat PFT dekking en samestelling, grond fisiese- en chemiese eienskappe en N-mineralisasie en suur fosfatase aktiwiteit verskil tussen indringing status, geomorfologiese sones en oor seisoene. Ten opsigte van meeste grond fisiese en chemiese eienskappe en indekse van stikstof (N) en fosfor (P) siklusse kom die rivier vogregimes (droë oewersones) baie ooreen met die terrestriële gebiede. Aan die anderkant is die natbanksones gekenmerk deur grondeienskappe wat baie verskil van die ander twee geomorfologiese gebiede. Die gegewens ondersteun die hipotese dat indringing deur Acacia spp. verskeie grondeienskappe verander en plante se funksionele kenmerke beïnvloed deur i) die sisteem met voedingstowwe te verryk (veral N); ii) verhoog die toevoeging van plantmateriaal; iii) verander grond fisiese eienskappe; iv) verander die samestelling en verminder die dekking van PFT; v) en verhoog P biogeochemie. Hoewel grond fisiese -en chemiese eienskappe, en indekse van N en P mineralisasie verminder is tot vlakke wat soortgelyk aan natuurlike areas, het beskikbare anorganiese N twee keer hoër gebly by skoongemaakte gebiede. Nietemin, voorheen skoongemaakte gebiede is weer-binnegeval deur eksotiese grasse en die regenerasie of hertelling van inheemse fynbos gemeenskappe is taamlik beperk, veral houtagtige oewer struike en bome. Korrelasies tussen grond slik-en klei-inhoud en verskeie grondeienskappe gemeet in hierdie en ander studies dui op belangrike skakeling tussen die grondtekstuur en voedingstof beskikbaarheid. Die opruiming van Acacia spp. mag as aansporing dien vir die herstellingsproses van rivieroewerstelsels, maar veranderinge in die funksie van ekosisteme (bv. verhoogte grond N beskikbaarheid), as gevolg van indringing, mag aktiewe herstel noodsaak nadat die indringer spesies verwyder is. Aktiewe herstel onder sulke omstandighede sal verwag word om die herstel van skoongemaak oewer gemeenskappe te fasiliteer. Ons het wel egter nog 'n gebrek aan die meganistiese begrip in verband met die herstel van fynbos oewerwal areas na opruimings-inisiatiewe, sedert die sukses van herstel kan afhang van komplekse interaksie en terugvoer siklusse tussen die plante en hul fisiese omgewing. ʼn Meer omvattende begrip van fynbos rivieroewer ekologiese prosesse sal nie net die doeltreffendheid van opruimings-inisiatiewe deur die integrasie van wetenskaplike navorsing en bestuur verbeter nie, maar ook vooraf die gebied van rivieroewer-ekologie.
Mursidawati, Sofi. "Mycorrhizal association, propagation and conservation of the myco-heterotrophic orchid Rhizanthella gardneri". University of Western Australia. School of Earth and Geographical Sciences, 2004. http://theses.library.uwa.edu.au/adt-WU2004.0014.
Texto completoPritchard, Deborah Leeanne. "Phosphorus bioavailability from land-applied biosolids in south-western Australia". Curtin University of Technology, Muresk Institute, 2005. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=16492.
Texto completoThe biosolid P was predominantly inorganic (92%), and hence the organic fraction (8%) available for mineralisation at all times would be extremely low. The most common forms of biosolid P were water-soluble P and exchangeable inorganic P (66%), followed by bicarbonate extractable P (19%) and the remaining P as inorganic forms associated with Fe, Al and Ca (14%). Following the application of biosolids to a lateritic soil, the Fe and Al soil fractions sorbed large amounts of P, not unlike the distribution of P following the addition of MCP. Further investigation would be required to trace the cycling of biosolid P in the various soil pools. The growth response of wheat (Triticum aestivum L.) to increasing rates of biosolids and comparable rates of inorganic P as MCP, to a maximum of 150 mg P/kg soil was examined in the glasshouse. The percentage relative effectiveness (RE) of biosolids was calculated using fitted curve coefficients from the Mitscherlich equation: y = a (1-b exp–cx) for dry matter (DM) production and P uptake. The initial effectiveness of biosolid P was comparable to that of MCP with the percentage RE of biosolids averaging 106% for DM production of wheat shoots and 118% for shoot P uptake at 33 days after sowing (DAS) over three consecutive crops. The percentage residual value (RV) declined at similar rates for DM production in MCP and biosolids, decreasing to about 33% relative to freshly applied MCP in the second crop and to approximately 16% in the third crop. The effectiveness of biosolid P was reduced significantly compared with inorganic P when applied to a field site 80 km east of Perth (520 mm annual rainfall). An infertile lateritic podsolic soil, consistent with the glasshouse experiment and representative of a soil type typically used for the agricultural application of biosolids in Western Australia was used.
Increasing rates of biosolids and comparable rates of triple superphosphate (TSP), to a maximum of 145 kg P/ha were applied to determine a P response curve. The percentage RE was calculated for seasonal DM production, final grain yield and P uptake in wheat followed by lupin (Lupinus angustifolius L.) rotation for the 2001 and 2002 growing seasons, respectively. In the first year of wheat, the RE for P uptake in biosolids compared with top-dressed TSP ranged from 33% to 55% over the season and by grain harvest was 67%. In the second year, and following incorporation with the disc plough at seeding, the RE for P uptake by lupins in biosolids averaged 79% over the growing season compared with top-dressed TSP, and by grain harvest the RE was 60%. The residual value (RV) of lupins at harvest in biosolids compared with freshly applied TSP was 47%. The non-uniform placement of biosolids (i.e. spatial heterogeneity) was primarily responsible for the decreased ability of plant roots to absorb P. The P was more effective where biosolids were finely dispersed throughout the soil, less so when roughly cultivated and least effective when placed on the soil surface without incorporation. The RE for grain harvest of wheat in the field decreased from 67% to 39% where biosolids were not incorporated (i.e. surface-applied). The RE could also be modified by factors such as soil moisture and N availability in the field, although it was possible to keep these variables constant in the glasshouse. Consequently, absolute values determined for the RE need to be treated judiciously. Calculations showed that typical loading rates of biosolids required to satisfy agronomic P requirements of wheat in Western Australia in the first season could vary from 0 to 8.1 t DS/ha, depending on soil factors such as the P Retention Index (PRI) and bicarbonate available P value.
Loading rates of biosolids were inadequate for optimum P uptake by wheat at 5 t DS/ha (i.e. 145 kg P/ha) based on the NLBAR on high P sorbing soils with a low fertiliser history (i.e. PRI >15, Colwell bicarbonate extractable P <15 mg P/kg). On soils of PRI <2 mL/g however, biosolids applied at identical loading rates would result in high concentrations of available P. Further work on sites not P deficient would be necessary to validate these findings on farmed soils with a regular history of P fertiliser. The sieving of soil samples used in the field experiment to remove stones and coarse organic matter prior to chemical analysis inadvertently discarded biosolids particles >2 mm, and thus their was little relationship between soil bicarbonate extractable P and P uptake by plants in the field. The risk of P leaching in biosolids-amended soil was examined over a number of different soil types at comparable rates of P at 140 mg P/kg (as either biosolids or MCP) in a laboratory experiment. Given that biosolids are restricted on sites prone to water erosion, the study focussed on the movement of water-soluble P by leaching rather than by runoff of water-soluble P and particulate P. In general the percentage soluble reactive P recovered was lower in soils treated with biosolids than with MCP, as measured in leachate collected using a reverse soil leachate unit. This was particularly evident in acid washed sand with SRP measuring 14% for biosolids and 71% for MCP, respectively, although the differences were not as large in typical agricultural soils. Specific soil properties, such as the PRI, pH, organic carbon and reactive Fe content were negatively correlated to soluble reactive P in leachate and thus reduced the risk of P leaching in biosolids-amended soil.
Conversely, the total P and bicarbonate extractable P status of the soils investigated were unreliable indicators as to the amount of P leached. On the basis of the experiments conducted, soils in Western Australia were categorised according to their ability to minimise P enrichment and provide P necessary for crop growth at loading rates determined by the NLBAR. Biosolids applied at the NLBAR to soils of PRI >2mL/g with reactive Fe >200 mg/kg were unlikely to necessitate P loading restrictions. Although specific to anaerobically digested biosolids cake applied to Western Australian soils, the results will be of relevance to any industry involved in the land application of biosolids, to prevent P contamination in water bodies and to make better use of P in crop production.
Fisher, Judith L. "Fundamental changes to ecosystem properties and processes linked to plant invasion and fire frequency in a biodiverse woodland". University of Western Australia. School of Plant Biology, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0109.
Texto completoLibros sobre el tema "Plant conservation – Western Australia"
Strawbridge, M. The extent, condition and management of remnant vegetation in water resource recovery catchments in south Western Australia: Report to the Natural Heritage Trust. East Perth, W.A: Water and Rivers Commission, 1999.
Buscar texto completoPlant life of Western Australia. Kenthurst, NSW: Kangaroo Press, 1990.
Buscar texto completoBurbidge, Andrew A. Threatened animals of Western Australia. Kensington, W.A: Dept. of Conservation and Land Management, 2004.
Buscar texto completoBurbidge, Andrew A. Nature conservation reserves in the Kimberley, Western Australia. Como, W.A: Dept. of Conservation and Land Management, 1991.
Buscar texto completoOrnduff, Robert. Islands on islands: Plant life on the granite outcrops of Western Australia. Honolulu: Published for Harold L. Lyon Arboretum by the University of Hawaii Press, 1987.
Buscar texto completoRao, T. A. Conservation of wild orchids of Kodagu in the Western Ghats. [Bangalore: Centre for Technology Development], 1998.
Buscar texto completoChristensen, P. E. S. The Karri forest: Its conservation significance and management. Como, W.A: Dept. of Conservation and Land Management, 1992.
Buscar texto completoConservation Commission of Western Australia. A review of high conservation value in Western Australia's south-west forests: A report to the Conservation Commission of Western Australia. Fremantle: Ecoscape, 2004.
Buscar texto completoGrey, Kathleen. Miospore assemblages from the Devonian reef complexes, Canning Basin, Western Australia. Perth: State Print, 1992.
Buscar texto completoCarr, William M. B. Exploration and mining in national parks and conservation reserves in western Australia. S.l: s.n, 1993.
Buscar texto completoCapítulos de libros sobre el tema "Plant conservation – Western Australia"
Burbidge, Andrew y Gordon Wyre. "Conservation of reptiles and frogs in Western Australia". En Herpetology in Australia, 43–48. P.O. Box 20, Mosman NSW 2088, Australia: Royal Zoological Society of New South Wales, 1993. http://dx.doi.org/10.7882/rzsnsw.1993.007.
Texto completoPearson, David J. "Distribution, status and conservation of pythons in Western Australia". En Herpetology in Australia, 383–96. P.O. Box 20, Mosman NSW 2088, Australia: Royal Zoological Society of New South Wales, 1993. http://dx.doi.org/10.7882/rzsnsw.1993.062.
Texto completoCampbell, Andrew, Phil Grice y Justin Hardy. "26. Local Conservation Action in Western Australia". En Fertile Ground, 340–53. Rugby, Warwickshire, United Kingdom: Practical Action Publishing, 1999. http://dx.doi.org/10.3362/9781780444963.026.
Texto completoArmstrong, Kyle N. "The current status of bats in Western Australia". En The Biology and Conservation of Australasian Bats, 257–69. P.O. Box 20, Mosman NSW 2088, Australia: Royal Zoological Society of New South Wales, 2011. http://dx.doi.org/10.7882/fs.2011.026.
Texto completoAnderson, G. C. y I. R. P. Fillery. "Sulphate and nitrogen net mineralisation in coarse-textured soils in western Australia". En Plant Nutrition, 944–45. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/0-306-47624-x_460.
Texto completoConnell, Karen. "Marketing soil acidity knowledge in Western Australia". En Plant-Soil Interactions at Low pH: Principles and Management, 717–21. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0221-6_114.
Texto completoWhitford, Kim y Geoff Stoneman. "Management of tree hollows in the jarrahEucalyptus marginata forest of Western Australia". En Conservation of Australia's Forest Fauna, 807–29. P.O. Box 20, Mosman NSW 2088: Royal Zoological Society of New South Wales, 2004. http://dx.doi.org/10.7882/fs.2004.049.
Texto completoMcComb, A. J. y R. J. Lukatelich. "Nutrients and Plant Biomass in Australian Estuaries, with Particular Reference to South-western Australia". En Limnology in Australia, 433–55. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4820-4_27.
Texto completoAbbott, Ian y Neil Burrows. "Monitoring biodiversity in jarrah forest in south-west Western Australia: the Forestcheck initiative". En Conservation of Australia's Forest Fauna, 947–58. P.O. Box 20, Mosman NSW 2088: Royal Zoological Society of New South Wales, 2004. http://dx.doi.org/10.7882/fs.2004.947.
Texto completode Tores, Paul J. y Nicky Marlow. "The Relative Merits of Predator-Exclusion Fencing and Repeated Fox Baiting for Protection of Native Fauna: Five Case Studies from Western Australia". En Fencing for Conservation, 21–42. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0902-1_3.
Texto completoActas de conferencias sobre el tema "Plant conservation – Western Australia"
Lamoureux, Sebastian, Erik Veneklaas, Pieter Poot y Michael O’Kane. "The effect of cover system depth on native plant water relations in semi-arid Western Australia". En Mine Closure 2016. Australian Centre for Geomechanics, Perth, 2016. http://dx.doi.org/10.36487/acg_rep/1608_42_lamoureux.
Texto completoPeterseim, Juergen H., Amir Tadros, Udo Hellwig y Stuart White. "Integrated Solar Combined Cycle Plants Using Solar Towers With Thermal Storage to Increase Plant Performance". En ASME 2013 Power Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/power2013-98121.
Texto completoLuo, Chengcai, Hongwei An, Liang Cheng y David White. "Calibration of UWA’s O-Tube Flume Facility". En ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/omae2012-83274.
Texto completoBoehm, B. y R. R. Marks. "Technical and Economical Aspects of Using Gas Turbine Technology in Eastern Europe Including the Commonwealth of Independent States (CIS)". En ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/92-gt-353.
Texto completoBlinderman, Michael S. y Bernard Anderson. "Underground Coal Gasification for Power Generation: High Efficiency and CO2-Emissions". En ASME 2004 Power Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/power2004-52036.
Texto completoInformes sobre el tema "Plant conservation – Western Australia"
A decade of science support in the sagebrush biome (NOTE: to be released late September 2021). Natural Resources Conservation Service, septiembre de 2021. http://dx.doi.org/10.32747/2021.7488985.
Texto completo