Artículos de revistas sobre el tema "Phytoremediation enhanced by microorganisms"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Phytoremediation enhanced by microorganisms".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
ANDARISTA UTOMO, ADZALIA y SARWOKO MANGKOEDIHARDJO. "Preliminary Assessment of Mixed Plants for Phytoremediation of Chromium Contaminated Soil". Current World Environment 13, Special issue 1 (25 de noviembre de 2018): 22–24. http://dx.doi.org/10.12944/cwe.13.special-issue1.04.
Texto completoPtaszek, Natalia, Magdalena Pacwa-Płociniczak, Magdalena Noszczyńska y Tomasz Płociniczak. "Comparative Study on Multiway Enhanced Bio- and Phytoremediation of Aged Petroleum-Contaminated Soil". Agronomy 10, n.º 7 (1 de julio de 2020): 947. http://dx.doi.org/10.3390/agronomy10070947.
Texto completoPino, Nancy J., Luisa M. Muñera y Gustavo A. Peñuela. "Bioaugmentation with Immobilized Microorganisms to Enhance Phytoremediation of PCB-Contaminated Soil". Soil and Sediment Contamination: An International Journal 25, n.º 4 (27 de abril de 2016): 419–30. http://dx.doi.org/10.1080/15320383.2016.1148010.
Texto completoZhao, Chong, Guosen Zhang y Jinhui Jiang. "Enhanced Phytoremediation of Bisphenol A in Polluted Lake Water by Seedlings of Ceratophyllum demersum and Myriophyllum spicatum from In Vitro Culture". International Journal of Environmental Research and Public Health 18, n.º 2 (19 de enero de 2021): 810. http://dx.doi.org/10.3390/ijerph18020810.
Texto completoAlarcón, Alejandro, Fred T. Davies, Robin L. Autenrieth y David A. Zuberer. "Arbuscular Mycorrhiza and Petroleum-Degrading Microorganisms Enhance Phytoremediation of Petroleum-Contaminated Soil". International Journal of Phytoremediation 10, n.º 4 (8 de julio de 2008): 251–63. http://dx.doi.org/10.1080/15226510802096002.
Texto completoJin, Zhong Min, Wei Sha, Yan Fu Zhang, Jing Zhao y Hongyang Ji. "Isolation of Burkholderia cepacia JB12 from lead- and cadmium-contaminated soil and its potential in promoting phytoremediation with tall fescue and red clover". Canadian Journal of Microbiology 59, n.º 7 (julio de 2013): 449–55. http://dx.doi.org/10.1139/cjm-2012-0650.
Texto completoGuo, Shuyu, Bo Feng, Chunqiao Xiao, Qi Wang y Ruan Chi. "Phosphate-solubilizing microorganisms to enhance phytoremediation of excess phosphorus pollution in phosphate mining wasteland soil". Bioremediation Journal 25, n.º 3 (16 de febrero de 2021): 271–81. http://dx.doi.org/10.1080/10889868.2021.1884528.
Texto completoIrawati, Wahyu, Adolf Jan Nexson Parhusip, Nida Sopiah y Juniche Anggelique Tnunay. "The Role of Heavy Metals-Resistant Bacteria Acinetobacter sp. in Copper Phytoremediation using Eichhornia crasippes [(Mart.) Solms]". KnE Life Sciences 3, n.º 5 (11 de septiembre de 2017): 208. http://dx.doi.org/10.18502/kls.v3i5.995.
Texto completoDhawi, Faten. "The Role of Plant Growth-Promoting Microorganisms (PGPMs) and Their Feasibility in Hydroponics and Vertical Farming". Metabolites 13, n.º 2 (9 de febrero de 2023): 247. http://dx.doi.org/10.3390/metabo13020247.
Texto completoIqra Tabassum, Sumaira Mazhar y Beenish Sarfraz. "Phytoremediation of Lead Contaminated Soil Using Sorghum Plant in Association with Indigenous Microbes". Scientific Inquiry and Review 6, n.º 3 (15 de septiembre de 2022): 79–93. http://dx.doi.org/10.32350/sir.63.05.
Texto completoBorowik, Agata, Jadwiga Wyszkowska y Jan Kucharski. "Microbiological Study in Petrol-Spiked Soil". Molecules 26, n.º 9 (1 de mayo de 2021): 2664. http://dx.doi.org/10.3390/molecules26092664.
Texto completoGao, Yang, Chiyuan Miao, Yafeng Wang, Jun Xia y Pei Zhou. "Metal-resistant microorganisms and metal chelators synergistically enhance the phytoremediation efficiency ofSolanum nigrumL. in Cd- and Pb-contaminated soil". Environmental Technology 33, n.º 12 (junio de 2012): 1383–89. http://dx.doi.org/10.1080/09593330.2011.629006.
Texto completoVocciante, Marco, Martina Grifoni, Danilo Fusini, Gianniantonio Petruzzelli y Elisabetta Franchi. "The Role of Plant Growth-Promoting Rhizobacteria (PGPR) in Mitigating Plant’s Environmental Stresses". Applied Sciences 12, n.º 3 (25 de enero de 2022): 1231. http://dx.doi.org/10.3390/app12031231.
Texto completoNjoku, Kelechi L., Eme O. Ude, Temitope O. Jegede, Omotoyosi Z. Adeyanju y Patricia O. Iheme. "Characterization of hydrocarbon degrading microorganisms from Glycine max and Zea mays phytoremediated crude oil contaminated soil". Environmental Analysis Health and Toxicology 37, n.º 2 (11 de abril de 2022): e2022008. http://dx.doi.org/10.5620/eaht.2022008.
Texto completoOmoregie, Gloria Omorowa, Abraham Goodness Ogofure, Beckley Ikhajiagbe y Geoffrey Obinna Anoliefo. "Quantitative and qualitative basement of microbial presence during phytoremediation of heavy metal polluted soil using Chromolaena odorata". Ovidius University Annals of Chemistry 31, n.º 2 (1 de enero de 2020): 145–51. http://dx.doi.org/10.2478/auoc-2020-0023.
Texto completoZheng, Yilin, Meng Cui, Lei Ni, Yafei Qin, Jinhua Li, Yu Pan y Xingguo Zhang. "Heterologous Expression of Human Metallothionein Gene HsMT1L Can Enhance the Tolerance of Tobacco (Nicotiana nudicaulis Watson) to Zinc and Cadmium". Genes 13, n.º 12 (19 de diciembre de 2022): 2413. http://dx.doi.org/10.3390/genes13122413.
Texto completoDang, Nga Diep Yen y Trong Thi Kim Pham. "Evaluation of the effect of microorganisms in Arachis pintoi roots on the potential of copper absorption in land". Science and Technology Development Journal 18, n.º 4 (30 de diciembre de 2015): 138–52. http://dx.doi.org/10.32508/stdj.v18i4.934.
Texto completoWhite, Philip J. "Phytoremediation assisted by microorganisms". Trends in Plant Science 6, n.º 11 (noviembre de 2001): 502. http://dx.doi.org/10.1016/s1360-1385(01)02093-3.
Texto completoShuang, Cui, Han Qing y Bai Song. "Enhanced technology of phytoremediation". E3S Web of Conferences 261 (2021): 04034. http://dx.doi.org/10.1051/e3sconf/202126104034.
Texto completoTiodar, Emanuela D., Cristina L. Văcar y Dorina Podar. "Phytoremediation and Microorganisms-Assisted Phytoremediation of Mercury-Contaminated Soils: Challenges and Perspectives". International Journal of Environmental Research and Public Health 18, n.º 5 (2 de marzo de 2021): 2435. http://dx.doi.org/10.3390/ijerph18052435.
Texto completoCao, Xiu Feng y Li Ping Liu. "Using Microorganisms to Facilitate Phytoremediation in Mine Tailings with Multi Heavy Metals". Advanced Materials Research 1094 (marzo de 2015): 437–40. http://dx.doi.org/10.4028/www.scientific.net/amr.1094.437.
Texto completoHrynkiewicz, Katarzyna, Michał Złoch, Tomasz Kowalkowski, Christel Baum y Bogusław Buszewski. "Efficiency of microbially assisted phytoremediation of heavy-metal contaminated soils". Environmental Reviews 26, n.º 3 (septiembre de 2018): 316–32. http://dx.doi.org/10.1139/er-2018-0023.
Texto completoKhan, Abdul G. "Mycorrhizoremediation—An enhanced form of phytoremediation". Journal of Zhejiang University SCIENCE B 7, n.º 7 (julio de 2006): 503–14. http://dx.doi.org/10.1631/jzus.2006.b0503.
Texto completoJankong, P., P. Visoottiviseth y S. Khokiattiwong. "Enhanced phytoremediation of arsenic contaminated land". Chemosphere 68, n.º 10 (agosto de 2007): 1906–12. http://dx.doi.org/10.1016/j.chemosphere.2007.02.061.
Texto completoKamnev, Alexander A. y Daniël van der Lelie. "Chemical and Biological Parameters as Tools to Evaluate and Improve Heavy Metal Phytoremediation". Bioscience Reports 20, n.º 4 (1 de agosto de 2000): 239–58. http://dx.doi.org/10.1023/a:1026436806319.
Texto completoIqbal, Muhammad, Altaf Ahmad, M. K. A. Ansari, M. I. Qureshi, Ibrahim M. Aref, P. R. Khan, S. S. Hegazy, Hashim El-Atta, Azamal Husen y Khalid R. Hakeem. "Improving the phytoextraction capacity of plants to scavenge metal(loid)-contaminated sites". Environmental Reviews 23, n.º 1 (marzo de 2015): 44–65. http://dx.doi.org/10.1139/er-2014-0043.
Texto completoDemarco, Carolina Faccio, Maurízio Silveira Quadro, Filipe Selau Carlos, Simone Pieniz, Luiza Beatriz Gamboa Araújo Morselli y Robson Andreazza. "Bioremediation of Aquatic Environments Contaminated with Heavy Metals: A Review of Mechanisms, Solutions and Perspectives". Sustainability 15, n.º 2 (11 de enero de 2023): 1411. http://dx.doi.org/10.3390/su15021411.
Texto completoFeng, Yuming. "Interactions among Rhizosphere Microorganisms, Mechanisms and Potential Application in Phytoremediation". SHS Web of Conferences 144 (2022): 01003. http://dx.doi.org/10.1051/shsconf/202214401003.
Texto completoSiciliano, Steven D. y James J. Germida. "Enhanced phytoremediation of chlorobenzoates in rhizosphere soil". Soil Biology and Biochemistry 31, n.º 2 (febrero de 1999): 299–305. http://dx.doi.org/10.1016/s0038-0717(98)00120-5.
Texto completoKhan, Irfan Ullah, Shan-Shan Qi, Farrukh Gul, Sehrish Manan, Justice Kipkorir Rono, Misbah Naz, Xin-Ning Shi, Haiyan Zhang, Zhi-Cong Dai y Dao-Lin Du. "A Green Approach Used for Heavy Metals ‘Phytoremediation’ Via Invasive Plant Species to Mitigate Environmental Pollution: A Review". Plants 12, n.º 4 (6 de febrero de 2023): 725. http://dx.doi.org/10.3390/plants12040725.
Texto completoCirillo, Clelia, Barbara Bertoli, Giovanna Acampora y Loredana Marcolongo. "Bagnoli Urban Regeneration through Phytoremediation". Encyclopedia 2, n.º 2 (24 de abril de 2022): 882–92. http://dx.doi.org/10.3390/encyclopedia2020058.
Texto completoKim, Kwang Jin, Eun Ha Yoo y Stanley J. Kays. "Decay Kinetics of Toluene Phytoremediation Stimulation". HortScience 47, n.º 8 (agosto de 2012): 1195–98. http://dx.doi.org/10.21273/hortsci.47.8.1195.
Texto completoYasseen, Bassam T. y Roda F. Al-Thani. "Endophytes and Halophytes to Remediate Industrial Wastewater and Saline Soils: Perspectives from Qatar". Plants 11, n.º 11 (2 de junio de 2022): 1497. http://dx.doi.org/10.3390/plants11111497.
Texto completoAsilian, Ebrahim, Reza Ghasemi-Fasaei, Abdolmajid Ronaghi, Mozhgan Sepehri y Ali Niazi. "Chemical- and microbial-enhanced phytoremediation of cadmium-contaminated calcareous soil by maize". Toxicology and Industrial Health 35, n.º 5 (mayo de 2019): 378–86. http://dx.doi.org/10.1177/0748233719842752.
Texto completoAllamin, Ibrahim Alkali y Mohd Yunus Shukor. "Phytoremediation of PAHs in Contaminated Soils: A Review". Bioremediation Science and Technology Research 9, n.º 2 (31 de diciembre de 2021): 1–6. http://dx.doi.org/10.54987/bstr.v9i2.609.
Texto completoMaldaner, Joseila, Gerusa Pauli Kist Steffen, Cleber Witt Saldanha, Ricardo Bemfica Steffen, Luciane Almeri Tabaldi, Evandro Luiz Missio, Rosana Matos De Morais y Rejane Flores. "Combining tolerant species and microorganisms for phytoremediation in aluminium-contaminated areas". International Journal of Environmental Studies 77, n.º 1 (16 de enero de 2019): 108–21. http://dx.doi.org/10.1080/00207233.2018.1560838.
Texto completoWyszkowska, Jadwiga, Edyta Boros-Lajszner, Agata Borowik y Jan Kucharski. "The Role of Cellulose in Microbial Diversity Changes in the Soil Contaminated with Cadmium". Sustainability 14, n.º 21 (31 de octubre de 2022): 14242. http://dx.doi.org/10.3390/su142114242.
Texto completoLiu, Zhongchuang, Li-ao Wang, Shimin Ding y Hongyan Xiao. "Enhancer assisted-phytoremediation of mercury-contaminated soils by Oxalis corniculata L., and rhizosphere microorganism distribution of Oxalis corniculata L." Ecotoxicology and Environmental Safety 160 (septiembre de 2018): 171–77. http://dx.doi.org/10.1016/j.ecoenv.2018.05.041.
Texto completoShahid, M., A. Austruy, G. Echevarria, M. Arshad, M. Sanaullah, M. Aslam, M. Nadeem, W. Nasim y C. Dumat. "EDTA-Enhanced Phytoremediation of Heavy Metals: A Review". Soil and Sediment Contamination: An International Journal 23, n.º 4 (16 de diciembre de 2013): 389–416. http://dx.doi.org/10.1080/15320383.2014.831029.
Texto completoJeong, Seulki, Hee Sun Moon, Woojin Yang y Kyoungphile Nam. "Applicability of Enhanced-phytoremediation for Arsenic-contaminated Soil". Journal of Soil and Groundwater Environment 21, n.º 1 (28 de febrero de 2016): 40–48. http://dx.doi.org/10.7857/jsge.2016.21.1.040.
Texto completoVan Aken, Benoit. "Transgenic plants for enhanced phytoremediation of toxic explosives". Current Opinion in Biotechnology 20, n.º 2 (abril de 2009): 231–36. http://dx.doi.org/10.1016/j.copbio.2009.01.011.
Texto completoCameselle, Claudio, Reshma A. Chirakkara y Krishna R. Reddy. "Electrokinetic-enhanced phytoremediation of soils: Status and opportunities". Chemosphere 93, n.º 4 (octubre de 2013): 626–36. http://dx.doi.org/10.1016/j.chemosphere.2013.06.029.
Texto completoQamar, Fouzia y Samrah Tahir Khan. "Phytoremediation- A Green Technology for Cleaning the Environment". Lahore Garrison University Journal of Life Sciences 2, n.º 1 (22 de abril de 2020): 87–102. http://dx.doi.org/10.54692/lgujls.2018.020149.
Texto completoDalCorso, Giovanni, Elisa Fasani, Anna Manara, Giovanna Visioli y Antonella Furini. "Heavy Metal Pollutions: State of the Art and Innovation in Phytoremediation". International Journal of Molecular Sciences 20, n.º 14 (11 de julio de 2019): 3412. http://dx.doi.org/10.3390/ijms20143412.
Texto completoCRIȘAN, Ioana, Roxana VIDICAN, Anca PLEȘA y Tania MIHĂIESCU. "Phytoremediation Potential of Iris spp." Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Agriculture 78, n.º 1 (14 de mayo de 2021): 1. http://dx.doi.org/10.15835/buasvmcn-agr:2020.0046.
Texto completoZhang, Jing, Rui Yin, Xiangui Lin, Weiwei Liu, Ruirui Chen y Xuanzhen Li. "Interactive Effect of Biosurfactant and Microorganism to Enhance Phytoremediation for Removal of Aged Polycyclic Aromatic Hydrocarbons from Contaminated Soils". JOURNAL OF HEALTH SCIENCE 56, n.º 3 (2010): 257–66. http://dx.doi.org/10.1248/jhs.56.257.
Texto completoGladkov, Evgeny A., Dmitry V. Tereshonok, Anna Y. Stepanova y Olga V. Gladkova. "Plant–Microbe Interactions under the Action of Heavy Metals and under the Conditions of Flooding". Diversity 15, n.º 2 (26 de enero de 2023): 175. http://dx.doi.org/10.3390/d15020175.
Texto completoIhtisham, Muhammad, Azam Noori, Saurabh Yadav, Mohammad Sarraf, Pragati Kumari, Marian Brestic, Muhammad Imran, Fuxing Jiang, Xiaojun Yan y Anshu Rastogi. "Silver Nanoparticle’s Toxicological Effects and Phytoremediation". Nanomaterials 11, n.º 9 (24 de agosto de 2021): 2164. http://dx.doi.org/10.3390/nano11092164.
Texto completoJaskulak, Marta y Anna Grobelak. "Potential applications of plant in vitro cultures in phytoremediation studies". Challenges of Modern Technology 8, n.º 2 (30 de junio de 2017): 11–17. http://dx.doi.org/10.5604/01.3001.0012.2613.
Texto completoIbragimova, T. M., P. Sh Mammadova, E. R. Babayev, K. R. Gahramanova y A. E. Almammadova. "Biotechnological method of cleaning oil-contaminated soils". World of petroleum products 02 (2022): 20–23. http://dx.doi.org/10.32758/2782-3040-2022-0-2-20-23.
Texto completo