Literatura académica sobre el tema "Phytoremediation enhanced by microorganisms"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Phytoremediation enhanced by microorganisms".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Phytoremediation enhanced by microorganisms"
ANDARISTA UTOMO, ADZALIA y SARWOKO MANGKOEDIHARDJO. "Preliminary Assessment of Mixed Plants for Phytoremediation of Chromium Contaminated Soil". Current World Environment 13, Special issue 1 (25 de noviembre de 2018): 22–24. http://dx.doi.org/10.12944/cwe.13.special-issue1.04.
Texto completoPtaszek, Natalia, Magdalena Pacwa-Płociniczak, Magdalena Noszczyńska y Tomasz Płociniczak. "Comparative Study on Multiway Enhanced Bio- and Phytoremediation of Aged Petroleum-Contaminated Soil". Agronomy 10, n.º 7 (1 de julio de 2020): 947. http://dx.doi.org/10.3390/agronomy10070947.
Texto completoPino, Nancy J., Luisa M. Muñera y Gustavo A. Peñuela. "Bioaugmentation with Immobilized Microorganisms to Enhance Phytoremediation of PCB-Contaminated Soil". Soil and Sediment Contamination: An International Journal 25, n.º 4 (27 de abril de 2016): 419–30. http://dx.doi.org/10.1080/15320383.2016.1148010.
Texto completoZhao, Chong, Guosen Zhang y Jinhui Jiang. "Enhanced Phytoremediation of Bisphenol A in Polluted Lake Water by Seedlings of Ceratophyllum demersum and Myriophyllum spicatum from In Vitro Culture". International Journal of Environmental Research and Public Health 18, n.º 2 (19 de enero de 2021): 810. http://dx.doi.org/10.3390/ijerph18020810.
Texto completoAlarcón, Alejandro, Fred T. Davies, Robin L. Autenrieth y David A. Zuberer. "Arbuscular Mycorrhiza and Petroleum-Degrading Microorganisms Enhance Phytoremediation of Petroleum-Contaminated Soil". International Journal of Phytoremediation 10, n.º 4 (8 de julio de 2008): 251–63. http://dx.doi.org/10.1080/15226510802096002.
Texto completoJin, Zhong Min, Wei Sha, Yan Fu Zhang, Jing Zhao y Hongyang Ji. "Isolation of Burkholderia cepacia JB12 from lead- and cadmium-contaminated soil and its potential in promoting phytoremediation with tall fescue and red clover". Canadian Journal of Microbiology 59, n.º 7 (julio de 2013): 449–55. http://dx.doi.org/10.1139/cjm-2012-0650.
Texto completoGuo, Shuyu, Bo Feng, Chunqiao Xiao, Qi Wang y Ruan Chi. "Phosphate-solubilizing microorganisms to enhance phytoremediation of excess phosphorus pollution in phosphate mining wasteland soil". Bioremediation Journal 25, n.º 3 (16 de febrero de 2021): 271–81. http://dx.doi.org/10.1080/10889868.2021.1884528.
Texto completoIrawati, Wahyu, Adolf Jan Nexson Parhusip, Nida Sopiah y Juniche Anggelique Tnunay. "The Role of Heavy Metals-Resistant Bacteria Acinetobacter sp. in Copper Phytoremediation using Eichhornia crasippes [(Mart.) Solms]". KnE Life Sciences 3, n.º 5 (11 de septiembre de 2017): 208. http://dx.doi.org/10.18502/kls.v3i5.995.
Texto completoDhawi, Faten. "The Role of Plant Growth-Promoting Microorganisms (PGPMs) and Their Feasibility in Hydroponics and Vertical Farming". Metabolites 13, n.º 2 (9 de febrero de 2023): 247. http://dx.doi.org/10.3390/metabo13020247.
Texto completoIqra Tabassum, Sumaira Mazhar y Beenish Sarfraz. "Phytoremediation of Lead Contaminated Soil Using Sorghum Plant in Association with Indigenous Microbes". Scientific Inquiry and Review 6, n.º 3 (15 de septiembre de 2022): 79–93. http://dx.doi.org/10.32350/sir.63.05.
Texto completoTesis sobre el tema "Phytoremediation enhanced by microorganisms"
Afegbua, Seniyat Larai. "Importance of plants and microorganisms in the Phytoremediation of brownfield sites". Thesis, University of Birmingham, 2014. http://etheses.bham.ac.uk//id/eprint/5450/.
Texto completoSaunders, Aaron M. "The physiology of microorganisms in enhanced biological phosphorous removal /". [St. Lucia, Qld.], 2005. http://adt.library.uq.edu.au/public/adt-QU20060322.224547/index.html.
Texto completoWu, Shengchun. "Enhanced phytoextraction of metal contaminated soils using beneficial microorganisms". HKBU Institutional Repository, 2004. http://repository.hkbu.edu.hk/etd_ra/589.
Texto completoSengupta, Atanu. "Detection of biological species by surface enhanced Raman scattering /". Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/8523.
Texto completoHii, Yiik Siang. "Isolation and Microencapsulation of Phosphate Solubilizing Microorganisms for Enhanced Agricultural Growth on Peat". Thesis, Curtin University, 2020. http://hdl.handle.net/20.500.11937/82187.
Texto completoMichelini, Lucia. "Sulfonamide accumulation and effects on herbaceous and woody plants and microorganisms". Doctoral thesis, Università degli studi di Padova, 2013. http://hdl.handle.net/11577/3422567.
Texto completoUna delle vie principali attraverso cui i farmaci possono entrare nell'ambiente consiste nell’ampio uso che se ne fa in zootecnia. Infatti, in Europa questi principi attivi sono venduti nell’ordine di centinaia di tonnellate annue per singola nazione, per il solo utilizzo in ambito veterinario. In seguito alla somministrazione, fino al 90% della dose utilizzata di farmaco può essere escreta inalterata e, in seguito all'utilizzo del letame come ammendante organico, suolo e acque possono risultare contaminate. Il presente studio si concentra sugli effetti e sull’accumulo in piante legnose ed erbacee di sulfamidici, un gruppo di agenti antimicrobici (d'ora in poi chiamati antibiotici) frequentemente rilevati negli ecosistemi agrari, la cui persistenza rappresenta un serio rischio per gli organismi viventi ad essi connessi. La tesi è articolata in 7 capitoli. Nella prima parte (capitolo 1) è descritta la situazione generale relativa alla presenza di antibiotici negli ambienti agrari e al loro impatto sulla crescita e lo sviluppo di organismi viventi ad essi esposti. Successivamente, dal capitolo 2 al capitolo 6, sono presentate varie prove sperimentali, alcune effettuate in laboratorio ed altre in serra. In particolare, il capitolo 2 si occupa della risposta di piante di Salix fragilis L. all’antibiotico sulfadimetossina, aggiunto alla soluzione nutritiva in concentrazioni da 155 a 620 mg l-1, nonché del potenziale accumulo nei tessuti vegetali. Lo studio mostra la tendenza di questa specie legnosa di assorbire e accumulare la molecola attiva a livello di apparato radicale. Il capitolo 3 ripercorre il disegno sperimentale adottato nella prova descritta nel capitolo 2, con la differenza che, in questo caso, le piante di Salix fragilis L. sono state esposte a dosi di sulfadimetossina che approssimano quelle registrate in alcuni ambientali agrari, ovvero da 0.01 a 10 mg l-1. Lo studio ha mostrato che non appaiono effetti negativi sulla crescita delle piante di salice fino alla dose di 1 mg l-1. Tuttavia, aumentando il livello del principio attivo sono state evidenziate delle importanti alterazioni sull’architettura radicale. I capitoli 4 e 5 considerano, rispettivamente, gli effetti e l'accumulo di un altro sulfamidico in piante di Salix fragilis L. e Zea mays L., coltivate in un terreno arricchito con 10 mg e 200 kg-1 di sulfadiazina e il suo impatto sulle comunità microbiche e sulle attività enzimatiche associate al suolo e alla radice delle due specie vegetali. L'ultimo studio, presentato nel capitolo 6, si concentra sugli effetti indotti da circa 10 mg l-1 di sulfadimetossina e sulfametazina sulla struttura e sulla funzionalità di radici di Hordeum vulgare L. I risultati provano che i sulfamidici causano importanti effetti sulla morfologia dell'apparato radicale e sull’integrità delle membrane delle cellule radicali. Concludendo, si è evidenziato (capitolo 7) che il Salix fragilis L. accumula e tollera meglio di Zea mays L. e Hordeum vulgare L. le molecole attive testate, mentre le specie erbacee sembrano essere più vulnerabili a questi inquinanti, di cui ne viene sconsigliato l’eventuale utilizzo nel campo del fitorimedio. Inoltre, in capitolo 7 rimarca le conseguenze negative sulla diversità funzionale e strutturale delle comunità microbiche del suolo.
Van, Zwieten Lukas. "Enhanced biodegradation of phenoxyacetate and triazine herbicides by plant-microbial rhizoplane associations and adapted soil microorganisms". Thesis, The University of Sydney, 1995. https://hdl.handle.net/2123/26900.
Texto completoCabrera, Motta José Alfonso. "Isolation, characterization and interactions of soil microorganisms involved in the enhanced biodegradation of non-fumigant organophosphate nematicides". Göttingen Cuvillier, 2009. http://d-nb.info/996598324/04.
Texto completoWillis, Robert M. "ncreased Production and Extraction Efficiency of Triacylglycerides from Microorganisms and an Enhanced Understanding of the Pathways Involved in the Production of Triacylglycerides and Fatty Alcohols". DigitalCommons@USU, 2013. http://digitalcommons.usu.edu/etd/1530.
Texto completoWillis, Robert M. "Increased Production and Extraction Efficiency of Triacylglycerides from Microorganisms and an Enhanced Understanding of the Pathways Involved in the Production of Triacylglycerides and Fatty Alcohols". DigitalCommons@USU, 2013. https://digitalcommons.usu.edu/etd/1530.
Texto completoLibros sobre el tema "Phytoremediation enhanced by microorganisms"
Johnson, A. Amendment-enhanced phytoextraction of soil contaminants. Hauppauge, N.Y: Nova Science Publishers, 2010.
Buscar texto completoA, Johnson y Singhal Naresh 1963-, eds. Amendment-enhanced phytoextraction of soil contaminants. Hauppauge, N.Y: Nova Science Publishers, 2009.
Buscar texto completoSmith, Geoffrey B. Development of a laser-based detection system for water-borne pathogens. Las Cruces, N.M: New Mexico Water Resources Research Institute, New Mexico State University, 2004.
Buscar texto completoNational Aeronautics and Space Administration (NASA) Staff. Enhanced Characterization of Microorganisms in the Spacecraft Environment. Independently Published, 2018.
Buscar texto completoPlant Growth Promoting Microorganisms: Microbial Resources for Enhanced Agricultural Productivity. Nova Science Publishers, Incorporated, 2019.
Buscar texto completoRaj, Niranjan S. y A. C. Udayashankar. Plant Growth Promoting Microorganisms: Microbial Resources for Enhanced Agricultural Productivity. Nova Science Publishers, Incorporated, 2019.
Buscar texto completoCapítulos de libros sobre el tema "Phytoremediation enhanced by microorganisms"
Tabinda, Amtul Bari, Ajwa Tahir, Maryam Dogar, Abdullah Yasar, Rizwan Rasheed y Mahnoor. "Role of Microorganisms in the Remediation of Toxic Metals from Contaminated Soil". En Phytoremediation, 231–59. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-17988-4_12.
Texto completoKaur, Charanjeet, Babli Bhandari, Alok Srivastava y Vijai Pal Singh. "Rhizobacteria Versus Chelating Agents: Tool for Phytoremediation". En Microorganisms for Sustainability, 249–66. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2679-4_9.
Texto completoMajumder, Anrini y Sumita Jha. "Hairy Roots: A Promising Tool for Phytoremediation". En Microorganisms in Environmental Management, 607–29. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2229-3_27.
Texto completoCrowley, David E., Sam Alvey y Eric S. Gilbert. "Rhizosphere Ecology of Xenobiotic-Degrading Microorganisms". En Phytoremediation of Soil and Water Contaminants, 20–36. Washington, DC: American Chemical Society, 1997. http://dx.doi.org/10.1021/bk-1997-0664.ch002.
Texto completoPoonam y Narendra Kumar. "Natural and Artificial Soil Amendments for the Efficient Phytoremediation of Contaminated Soil". En Microorganisms for Sustainability, 1–32. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9664-0_1.
Texto completoAnand, Sangeeta, Sushil Kumar Bharti, Sanjeev Kumar, S. C. Barman y Narendra Kumar. "Phytoremediation of Heavy Metals and Pesticides Present in Water Using Aquatic Macrophytes". En Microorganisms for Sustainability, 89–119. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9664-0_4.
Texto completoGhosh, Dipita, B. S. Manisha Singh, Manish Kumar, Subodh Kumar Maiti y Nabin Kumar Dhal. "Role of Endophytic Microorganisms in Phosphate Solubilization and Phytoremediation of Degraded Soils". En Microorganisms for Sustainability, 387–400. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5029-2_16.
Texto completoAkhundova, Elmira y Yamen Atakishiyeva. "Interaction Between Plants and Biosurfactant Producing Microorganisms in Petroleum Contaminated Absheron Soils". En Phytoremediation for Green Energy, 115–22. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7887-0_7.
Texto completoDeb, Vishal Kumar, Ahmad Rabbani, Shashi Upadhyay, Priyam Bharti, Hitesh Sharma, Devendra Singh Rawat y Gaurav Saxena. "Microbe-Assisted Phytoremediation in Reinstating Heavy Metal-Contaminated Sites: Concepts, Mechanisms, Challenges, and Future Perspectives". En Microorganisms for Sustainability, 161–89. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2679-4_6.
Texto completoProchazka, Marek. "SERS Investigations of Cells, Viruses and Microorganisms". En Surface-Enhanced Raman Spectroscopy, 127–48. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23992-7_6.
Texto completoActas de conferencias sobre el tema "Phytoremediation enhanced by microorganisms"
Gao, L. D., R. J. Zheng, T. An, S. Zhang y M. L. Pang. "Enhanced Phytoremediation of Pb-contaminated Soil with -Cyclodextrin". En 5th International Conference on Advanced Design and Manufacturing Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icadme-15.2015.176.
Texto completoChen, Tao, Chengxun Sun y Weiwei Chen. "Tween80-enhanced phytoremediation of polychlorinated biphenyls-contaminated soil". En The 3rd International Conference on Application of Materials Science and Environmental Materials (AMSEM2015). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813141124_0031.
Texto completoCulha, Mustafa, P. M. Champion y L. D. Ziegler. "Surface-Enhanced Raman Scattering of Microorganisms". En XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482861.
Texto completoReddy, Krishna R., Gema Amaya-Santos y Girish Kumar. "Environmental Sustainability Assessment of Soil Amendments for Enhanced Phytoremediation". En ASCE India Conference 2017. Reston, VA: American Society of Civil Engineers, 2018. http://dx.doi.org/10.1061/9780784482025.014.
Texto completoJadhav, Madhavi Vitthal. "Enhanced Coal bed Methane Recovery Using Microorganisms". En SPE Middle East Oil and Gas Show and Conference. Society of Petroleum Engineers, 2007. http://dx.doi.org/10.2118/105117-ms.
Texto completoAngelova, Violina. "PHYTOREMEDIATION POTENTIAL OF ENHANCED TOBACCO IN SOIL CONTAMINATED WITH HEAVY METALS". En 2nd International Scientific Conference. Association of Economists and Managers of the Balkans, Belgrade, Serbia, 2018. http://dx.doi.org/10.31410/itema.2018.1049.
Texto completoPremuzic, E. T. y M. Lin. "Prospects for Thermophilic Microorganisms in Microbial Enhanced Oil Recovery (MEOR)". En SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers, 1991. http://dx.doi.org/10.2118/21015-ms.
Texto completoOsmolovskaya, N. G., V. Yu Samuta, M. V. Bogomazova, O. N. Kuzina y V. V. Kurilenko. "PHYTOREMEDIATION POTENTIAL OF SOME ORNAMENTAL PLANTS IN RELATION TO URBAN SOILS POLLUTION WITH HEAVY METALS". En The All-Russian Scientific Conference with International Participation and Schools of Young Scientists "Mechanisms of resistance of plants and microorganisms to unfavorable environmental". SIPPB SB RAS, 2018. http://dx.doi.org/10.31255/978-5-94797-319-8-1103-1105.
Texto completoChen, T., C. X. Sun, G. G. Lin y Weiwei Chen. "Change in enzymatic activity in Tween80-enhanced phytoremediation of polychlorinated biphenyl-contaminated soil". En The 3rd International Conference on Application of Materials Science and Environmental Materials (AMSEM2015). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813141124_0026.
Texto completoAl-Harbawee, W. E. Q., D. I. Bashmakov y A. S. Lukatkin. "ASSESSMENT OF PHYTOREMEDIATION POTENTIAL OF HERBACEOUS PLANTS FROM CENTRAL RUSSIA FOR INDUSTRIAL WASTEWATER CONTAINING HEAVY METALS". En The All-Russian Scientific Conference with International Participation and Schools of Young Scientists "Mechanisms of resistance of plants and microorganisms to unfavorable environmental". SIPPB SB RAS, 2018. http://dx.doi.org/10.31255/978-5-94797-319-8-1021-1024.
Texto completoInformes sobre el tema "Phytoremediation enhanced by microorganisms"
Li, Jiangxia, Jun Zhang, Steven Larson, John Ballard, Kai Guo, Zikri Arslan, Youhua Ma, Charles Waggoner, Jeremy White y Fengxiang Han. Electrokinetic-enhanced phytoremediation of uranium-contaminated soil using sunflower and Indian mustard. Engineer Research and Development Center (U.S.), junio de 2020. http://dx.doi.org/10.21079/11681/37237.
Texto completoM.J. McInerney, N. Youssef, T. Fincher, S.K. Maudgalya, M.J. Folmsbee, R. Knapp y D. Nagle. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY. Office of Scientific and Technical Information (OSTI), mayo de 2004. http://dx.doi.org/10.2172/834168.
Texto completoM.J. McInerney, K.E. Duncan, N. Youssef, T. Fincher, S.K. Maudgalya, M.J. Folmsbee, R. Knapp, Randy R. Simpson, N.Ravi y D. Nagle. Development of Microorganisms with Improved Transport and Biosurfactant Activity for Enhanced Oil Recovery. Office of Scientific and Technical Information (OSTI), agosto de 2005. http://dx.doi.org/10.2172/860919.
Texto completoM.J. McInerney, R.M. Knapp, Jr D.P. Nagle, Kathleen Duncan, N. Youssef, M.J. Folmsbee y S. Maudgakya. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY. Office of Scientific and Technical Information (OSTI), junio de 2003. http://dx.doi.org/10.2172/822122.
Texto completoNegri, M. Cristina. Microorganisms Associated with Hydrocarbon Contaminated Sites and Reservoirs for Microbially Enhanced Oil Recovery (MEOR). Office of Scientific and Technical Information (OSTI), octubre de 2013. http://dx.doi.org/10.2172/1118140.
Texto completoWeinberg, Zwi G., Richard E. Muck, Nathan Gollop, Gilad Ashbell, Paul J. Weimer y Limin Kung, Jr. effect of lactic acid bacteria silage inoculants on the ruminal ecosystem, fiber digestibility and animal performance. United States Department of Agriculture, septiembre de 2003. http://dx.doi.org/10.32747/2003.7587222.bard.
Texto completoFreeman, Stanley, Russell Rodriguez, Adel Al-Abed, Roni Cohen, David Ezra y Regina Redman. Use of fungal endophytes to increase cucurbit plant performance by conferring abiotic and biotic stress tolerance. United States Department of Agriculture, enero de 2014. http://dx.doi.org/10.32747/2014.7613893.bard.
Texto completoWilson, Charles y Edo Chalutz. Biological Control of Postharvest Diseases of Citrus and Deciduous Fruit. United States Department of Agriculture, septiembre de 1991. http://dx.doi.org/10.32747/1991.7603518.bard.
Texto completoLitaor, Iggy, James Ippolito, Iris Zohar y Michael Massey. Phosphorus capture recycling and utilization for sustainable agriculture using Al/organic composite water treatment residuals. United States Department of Agriculture, enero de 2015. http://dx.doi.org/10.32747/2015.7600037.bard.
Texto completo