Literatura académica sobre el tema "Phytoremediation enhanced by microorganism"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Phytoremediation enhanced by microorganism".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Phytoremediation enhanced by microorganism"
Ptaszek, Natalia, Magdalena Pacwa-Płociniczak, Magdalena Noszczyńska y Tomasz Płociniczak. "Comparative Study on Multiway Enhanced Bio- and Phytoremediation of Aged Petroleum-Contaminated Soil". Agronomy 10, n.º 7 (1 de julio de 2020): 947. http://dx.doi.org/10.3390/agronomy10070947.
Texto completoANDARISTA UTOMO, ADZALIA y SARWOKO MANGKOEDIHARDJO. "Preliminary Assessment of Mixed Plants for Phytoremediation of Chromium Contaminated Soil". Current World Environment 13, Special issue 1 (25 de noviembre de 2018): 22–24. http://dx.doi.org/10.12944/cwe.13.special-issue1.04.
Texto completoLiu, Zhongchuang, Li-ao Wang, Shimin Ding y Hongyan Xiao. "Enhancer assisted-phytoremediation of mercury-contaminated soils by Oxalis corniculata L., and rhizosphere microorganism distribution of Oxalis corniculata L." Ecotoxicology and Environmental Safety 160 (septiembre de 2018): 171–77. http://dx.doi.org/10.1016/j.ecoenv.2018.05.041.
Texto completoZhang, Jing, Rui Yin, Xiangui Lin, Weiwei Liu, Ruirui Chen y Xuanzhen Li. "Interactive Effect of Biosurfactant and Microorganism to Enhance Phytoremediation for Removal of Aged Polycyclic Aromatic Hydrocarbons from Contaminated Soils". JOURNAL OF HEALTH SCIENCE 56, n.º 3 (2010): 257–66. http://dx.doi.org/10.1248/jhs.56.257.
Texto completoDhawi, Faten. "The Role of Plant Growth-Promoting Microorganisms (PGPMs) and Their Feasibility in Hydroponics and Vertical Farming". Metabolites 13, n.º 2 (9 de febrero de 2023): 247. http://dx.doi.org/10.3390/metabo13020247.
Texto completoZhao, Chong, Guosen Zhang y Jinhui Jiang. "Enhanced Phytoremediation of Bisphenol A in Polluted Lake Water by Seedlings of Ceratophyllum demersum and Myriophyllum spicatum from In Vitro Culture". International Journal of Environmental Research and Public Health 18, n.º 2 (19 de enero de 2021): 810. http://dx.doi.org/10.3390/ijerph18020810.
Texto completoJin, Zhong Min, Wei Sha, Yan Fu Zhang, Jing Zhao y Hongyang Ji. "Isolation of Burkholderia cepacia JB12 from lead- and cadmium-contaminated soil and its potential in promoting phytoremediation with tall fescue and red clover". Canadian Journal of Microbiology 59, n.º 7 (julio de 2013): 449–55. http://dx.doi.org/10.1139/cjm-2012-0650.
Texto completoIrawati, Wahyu, Adolf Jan Nexson Parhusip, Nida Sopiah y Juniche Anggelique Tnunay. "The Role of Heavy Metals-Resistant Bacteria Acinetobacter sp. in Copper Phytoremediation using Eichhornia crasippes [(Mart.) Solms]". KnE Life Sciences 3, n.º 5 (11 de septiembre de 2017): 208. http://dx.doi.org/10.18502/kls.v3i5.995.
Texto completoBorowik, Agata, Jadwiga Wyszkowska y Jan Kucharski. "Microbiological Study in Petrol-Spiked Soil". Molecules 26, n.º 9 (1 de mayo de 2021): 2664. http://dx.doi.org/10.3390/molecules26092664.
Texto completoPino, Nancy J., Luisa M. Muñera y Gustavo A. Peñuela. "Bioaugmentation with Immobilized Microorganisms to Enhance Phytoremediation of PCB-Contaminated Soil". Soil and Sediment Contamination: An International Journal 25, n.º 4 (27 de abril de 2016): 419–30. http://dx.doi.org/10.1080/15320383.2016.1148010.
Texto completoTesis sobre el tema "Phytoremediation enhanced by microorganism"
Ankumah, Ramble O. "Enhanced degradation in soil of the herbicide EPTC and determination of its degradative pathway by an isolated soil microorganism /". The Ohio State University, 1988. http://rave.ohiolink.edu/etdc/view?acc_num=osu148759630735724.
Texto completoOliveira, Tânia Filipa Mota. "Cooper phytoremediation by a salt marsh plant: microorganisms' contribution to enhance it". Master's thesis, 2014. https://repositorio-aberto.up.pt/handle/10216/77636.
Texto completoOliveira, Tânia Filipa Mota. "Cooper phytoremediation by a salt marsh plant: microorganisms' contribution to enhance it". Dissertação, 2014. https://repositorio-aberto.up.pt/handle/10216/77636.
Texto completoHeaton, Andrew Charles Peter. "Enhanced mercury processing by plants genetically engineered for mercury phytoremediation". 2002. http://purl.galileo.usg.edu/uga%5Fetd/heaton%5Fandrew%5Fc%5F200212%5Fphd.
Texto completoDirected by Bruce Lee Haines. Includes an article published in Journal of soil contamination, and articles submitted to Plant physiology, and Environmental toxicology and chemistry. Includes bibliographical references.
Wang, Haitang Jay. "Plant Growth-Promoting Rhizobacteria (PGPR) Enhanced Phytoremediation of DDT Contaminated Soil". Thesis, 2008. http://hdl.handle.net/10012/3721.
Texto completoWu, Shan Shan. "Enhanced Phytoremediation of Salt-Impacted Soils Using Plant Growth-Promoting Rhizobacteria (PGPR)". Thesis, 2009. http://hdl.handle.net/10012/4392.
Texto completoLai, Hung-Yu y 賴鴻裕. "Phytoremediation of Soils Contaminated with Cadmium, Zinc, and Lead Enhanced by EDTA". Thesis, 2004. http://ndltd.ncl.edu.tw/handle/86495106002009877013.
Texto completo國立臺灣大學
農業化學研究所
92
Heavy metals-contaminated soils can be remediated by phytoremediation techniques. Phytoextraction accumulated toxic metals from contaminated soil into the aboveground tissue of higher plants, which were then harvested and incinerated. Some synthetic chelating agents were applied to metal-contaminated soil to increase the mobility and bioavailability of the metal in the contaminated soils and also to increase the amount of heavy metals accumulated in the upper parts of plants. Rainbow pink (Dianthus Chinensis), Vetiver grass (Vetiver zizanioides), and Indian mustard (Brassica juncea) were used in this study to test the remediation of the Cd, Zn, and Pb-contaminated soil. The objectives of this study are to assess the effect of applying EDTA on the phytoremediation of metals-contaminated soils and to assess the interactions among three metals in multiple metals-contaminated soils. Different applying methods with same amounts of EDTA are also used in this study to assess their effect on the metal concentration in the shoot of plant and on reducing the potential risk of groundwater contamination. Rainbow pink accumulated about 80 mg Cd/kg, 3700 mg Zn/kg, and 220 mg Pb/kg when it was grown in the Cd, Zn, and Pb-contaminated soil for 50 days. This plant can be used for phytoextraction of multiple metals-contaminated soils. Vetiver grass can grow well in the same concentrations of heavy metals-contaminated soil, and the growth was not affected by the toxicity of heavy metals. The concentrations of Cd and Zn in the shoots of vetiver grass were 40.7±8.28 and 1,399±132 mg/kg, respectively, and no Pb was detected. Because of the toxicity and high concentrations of multiple metals occurred in the soils, some damages were found in the growth stage of Indian mustard. The concentrations of Cd, Zn, and Pb in soil solution were significantly increased after applying 5 or 10 mmol EDTA/kg (p< 0.05). The concentrations of Cd and Pb in shoot of rainbow pink were also significantly increased after EDTA treatments (p< 0.05), but it was not significantly increased for Zn. For biological uptake of metals in contaminated soil, the EDTA treatments only significantly increased the total uptake of Pb in the shoot of rainbow pink compared with the control treatment (p< 0.001), but it was not significantly increased for Cd and Zn uptake by rainbow pink. This indicated that the EDTA treatments could be evaluated as more efficient amendment method to remove the Pb from the contaminated soil. The results indicated that the concentrations of Cd, Zn, and Pb in the soil solution of vetiver grass were also significantly increased after applying EDTA treatments (p< 0.05), especially for applying 10 mmol EDTA/kg. Even the concentrations of the three metals in soil solution changed drastically, but the concentrations of Cd and Zn in the shoot of vetiver grass only varied from 20 to 30 mg Cd/kg and from 390 to 520 mg Zn/kg, respectively. The growth of vetiver grass was not affected by the toxicity of seriously contaminated metals. The applying of different concentrations of EDTA solution only slightly decreased the biomass of vetiver grass and slightly decreased the total removal of heavy metals from the contaminated soils. Applying 2 or 5 mmol EDTA/kg significantly increased the Cd, Zn, Pb, Fe, and Mn concentration in the soil solution of single- or multiple metals-contaminated soils (p< 0.05), but it had no significantly change on the concentration of Ca and Mg. Deionized water extractable metal concentrations are also significantly increased after applying EDTA (p< 0.05). Because of the strong extraction capacity of both 0.005M DTPA (pH 5.3) and 0.05M EDTA (pH 7.0), there was no significant increase on the metal concentration of two extractions methods after applying EDTA. There was no effect of single or multiple-dose application of 4 mmol EDTA/kg on biomass and total removal of heavy metals in shoots of rainbow pink. But the multiple-dose applying EDTA decreased the Cd, Zn, and Pb concentration in soil solution or extracted solution with deionized water, and thus reduced the risk of groundwater contamination. There were some interactions among Cd, Zn, and Pb in the multiple metals- contaminated soils. The result of metals concentration and total removal in the shoots of rainbow pink showed that, without applying EDTA, adding Zn or Pb had enhancement effect on the uptake of Cd in the shoot of rainbow pink. The addition of Cd had inhibition effect on the uptake of Zn by rainbow pink. After applying EDTA, some interactions were found, and the addition of two concentrations of EDTA had greatest effect on the uptake of Pb by rainbow pink compared with the other elements. In this study, planting rainbow pink in the Cd, Zn, and Pb-contaminated soil for 50 days without adding EDTA was the most economic and efficient method to remove Cd and Zn from contaminated soil compared with other treatments. The rainbow pink can accumulate high concentration of Cd and Zn in the shoots and remove the maximum amounts of these two elements (0.26 mg Cd/plant and 11.7 mg Zn/plant), and also had less risk on the pollution of the groundwater when comparing with other treatments. The addition of EDTA significantly increased the concentration and total removal of Pb in the shoots of rainbow pink, thus to reduce the remediation time. However, the application of EDTA was potential to pollute the groundwater. The result also indicated that 5 mmol EDTA/kg was recommended because the soil used in this study is a silty clay soil.
Montenegro, Inês Paes de Faria Monteiro. "Autochthonous Bioaugmentation - a Strategy For Enhanced Phytoremediation / Bioremediation of Mixed Contamination in Saltmarshes". Master's thesis, 2015. https://repositorio-aberto.up.pt/handle/10216/86324.
Texto completoMontenegro, Inês Paes de Faria Monteiro. "Autochthonous Bioaugmentation - a Strategy For Enhanced Phytoremediation / Bioremediation of Mixed Contamination in Saltmarshes". Dissertação, 2015. https://repositorio-aberto.up.pt/handle/10216/86324.
Texto completoJung-Chi, Lu y 呂榮吉. "A Simple Bio-Chip Utilizing Electrokinetics-Enhanced Nanocolloid Conjugation for the Rapid Identification of Microorganism". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/55042920301472101878.
Texto completo崑山科技大學
電腦與通訊研究所
104
Dielectrophoresis (DEP) has been widely used to manipulate, separate, and concentrate microscale particles. Unfortunately, DEP force is difficult to be used in regard to the manipulation of nanoscale molecules/particles. For manipulation of 50 to 100-nm particles, the electrical field strength must be higher than 3 × 106 V/m, and with a low applied voltage of 10 Vp-p, the electrode gap needs to be reduced to submicrons. Our research consists of a novel and simple approach, using a several tens micrometers scale electrode (low cost and easy to fabricate) to generate a dielectrophoretic microparticle assembly to form nanogaps with a locally amplified alternating current (AC) electric field gradient, which is used to rapidly trap nanocolloids. The results show that the amplified DEP force could effectively trap 20-nm colloids in the nanogaps between the 5-μm particle aggregates. The concentration factor at the local detection region was shown to be approximately 5 orders of magnitude higher than the bulk solution. This approach was also successfully used in bead-based surface-enhanced Raman spectroscopy (SERS) for the rapid identification of bacteria from diluted blood.
Libros sobre el tema "Phytoremediation enhanced by microorganism"
Johnson, A. Amendment-enhanced phytoextraction of soil contaminants. Hauppauge, N.Y: Nova Science Publishers, 2010.
Buscar texto completoA, Johnson y Singhal Naresh 1963-, eds. Amendment-enhanced phytoextraction of soil contaminants. Hauppauge, N.Y: Nova Science Publishers, 2009.
Buscar texto completoCapítulos de libros sobre el tema "Phytoremediation enhanced by microorganism"
Rajhi, Hayfa y Anouar Bardi. "Spinoffs of Phyoremediation and/or Microorganism Consortium in Soil, Sediment, and Water Treatments and Improvement: Study of Specific Cases and Its Socioeconomic and Environmental Advantages". En Phytoremediation, 157–82. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-17988-4_9.
Texto completoSong, Jing, Yong M. Luo y Long H. Wu. "Chelate-Enhanced Phytoremediation of Heavy Metal Contaminated Soil". En Biogeochemistry of Chelating Agents, 366–82. Washington, DC: American Chemical Society, 2005. http://dx.doi.org/10.1021/bk-2005-0910.ch022.
Texto completoAnjum, Shahnaz, Shayista Yousuf y Urfeya Mirza. "Recent Trends in Transgenic Plants for Enhanced Phytoremediation". En Bioremediation and Phytoremediation Technologies in Sustainable Soil Management, 241–61. Boca Raton: Apple Academic Press, 2022. http://dx.doi.org/10.1201/9781003280682-14.
Texto completoSingh, Jyoti y Ajay Veer Singh. "Microbial Strategies for Enhanced Phytoremediation of Heavy Metal-Contaminated Soils". En Environmental Pollutants and Their Bioremediation Approaches, 257–72. Boca Raton : Taylor & Francis, CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/b22171-9.
Texto completoUzoh, Ifeyinwa Monica, Chinyere Blessing Okebalama, Charles Arizechukwu Igwe y Olubukola Oluranti Babalola. "Management of Soil-Microorganism: Interphase for Sustainable Soil Fertility Management and Enhanced Food Security". En Food Security and Safety, 475–94. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-50672-8_25.
Texto completoWei, Shiqiang. "Phytoremediation of Contaminated Soils with Polycyclic Aromatic Hydrocarbons and Its Ecologically Enhanced Techniques". En Molecular Environmental Soil Science at the Interfaces in the Earth’s Critical Zone, 200–202. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-05297-2_60.
Texto completoDick, W. A., R. O. Ankumah, G. McClung y N. Abou-Assaf. "Enhanced Degradation of S-EthylN,N-Dipropylcarbamothioate in Soil and by an Isolated Soil Microorganism". En ACS Symposium Series, 98–112. Washington, DC: American Chemical Society, 1990. http://dx.doi.org/10.1021/bk-1990-0426.ch008.
Texto completo"Phytoremediation". En Natural and Enhanced Remediation Systems, 259–88. CRC Press, 2001. http://dx.doi.org/10.1201/9781420033069-10.
Texto completo"Phytoremediation". En Natural and Enhanced Remediation Systems. CRC Press, 2001. http://dx.doi.org/10.1201/9781420033069.ch5.
Texto completoBertha Ehis-Eriakha, Chioma, Stephen Eromosele Akemu, Simon Obgaji Otumala y Chinyere Augusta Ajuzieogu. "Biotechnological Potentials of Microbe Assisted Eco-Recovery of Crude Oil Impacted Environment". En Crude Oil - New Technologies and Recent Approaches [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98808.
Texto completoActas de conferencias sobre el tema "Phytoremediation enhanced by microorganism"
Minut, Mariana, Mihaela Rosca, Petronela Cozma, Mariana Diaconu y Maria Gavrilescu. "The Beneficial Role of Some Microorganism in Soil Phytoremediation and Mitigation of Health Risk". En 2020 International Conference on e-Health and Bioengineering (EHB). IEEE, 2020. http://dx.doi.org/10.1109/ehb50910.2020.9280178.
Texto completoGao, L. D., R. J. Zheng, T. An, S. Zhang y M. L. Pang. "Enhanced Phytoremediation of Pb-contaminated Soil with -Cyclodextrin". En 5th International Conference on Advanced Design and Manufacturing Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icadme-15.2015.176.
Texto completoChen, Tao, Chengxun Sun y Weiwei Chen. "Tween80-enhanced phytoremediation of polychlorinated biphenyls-contaminated soil". En The 3rd International Conference on Application of Materials Science and Environmental Materials (AMSEM2015). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813141124_0031.
Texto completoReddy, Krishna R., Gema Amaya-Santos y Girish Kumar. "Environmental Sustainability Assessment of Soil Amendments for Enhanced Phytoremediation". En ASCE India Conference 2017. Reston, VA: American Society of Civil Engineers, 2018. http://dx.doi.org/10.1061/9780784482025.014.
Texto completoAngelova, Violina. "PHYTOREMEDIATION POTENTIAL OF ENHANCED TOBACCO IN SOIL CONTAMINATED WITH HEAVY METALS". En 2nd International Scientific Conference. Association of Economists and Managers of the Balkans, Belgrade, Serbia, 2018. http://dx.doi.org/10.31410/itema.2018.1049.
Texto completoIto, Miu y Yuichi Sugai. "Study on Enhanced Oil Recovery Using Microorganism Generating Foam in Presence of Nanobubbles". En SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/205671-ms.
Texto completoChen, T., C. X. Sun, G. G. Lin y Weiwei Chen. "Change in enzymatic activity in Tween80-enhanced phytoremediation of polychlorinated biphenyl-contaminated soil". En The 3rd International Conference on Application of Materials Science and Environmental Materials (AMSEM2015). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813141124_0026.
Texto completoZhang, Zhiming, Dibyendu Sarkar, Virinder Sidhu y Rupali Datta. "REMOVAL OF LEAD IN RESIDENTIAL SOILS OF JERSEY CITY USING BIODEGRADABLE CHELATING AGENT-ENHANCED PHYTOREMEDIATION". En GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-356930.
Texto completoWang, Hong, Haibo Li y Tieheng Sun. "Notice of Retraction: Microbe Agent Enhanced Phytoremediation of PAHs Contaminated Farmland Soil with Alfalfa (Medicago sativa L.)". En 2011 5th International Conference on Bioinformatics and Biomedical Engineering. IEEE, 2011. http://dx.doi.org/10.1109/icbbe.2011.5781342.
Texto completoAbd Rahman, Hasrizal, M. Faizal Sedaralit, Suzalina Zainal y Julia R. de Rezende. "Modelling Reservoir Souring Mitigation Strategy Based on Dynamic Microorganisms Interactions". En ADIPEC. SPE, 2022. http://dx.doi.org/10.2118/211359-ms.
Texto completoInformes sobre el tema "Phytoremediation enhanced by microorganism"
Li, Jiangxia, Jun Zhang, Steven Larson, John Ballard, Kai Guo, Zikri Arslan, Youhua Ma, Charles Waggoner, Jeremy White y Fengxiang Han. Electrokinetic-enhanced phytoremediation of uranium-contaminated soil using sunflower and Indian mustard. Engineer Research and Development Center (U.S.), junio de 2020. http://dx.doi.org/10.21079/11681/37237.
Texto completo