Literatura académica sobre el tema "Physiological motion detection"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Physiological motion detection".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Physiological motion detection"
Wang, Liting, Xiaoqing Ding y Chi Fang. "Face live detection method based on physiological motion analysis". Tsinghua Science and Technology 14, n.º 6 (diciembre de 2009): 685–90. http://dx.doi.org/10.1016/s1007-0214(09)70135-x.
Texto completoKrause, Bryan M. y Geoffrey M. Ghose. "Micropools of reliable area MT neurons explain rapid motion detection". Journal of Neurophysiology 120, n.º 5 (1 de noviembre de 2018): 2396–409. http://dx.doi.org/10.1152/jn.00845.2017.
Texto completoZhang, Long, Xuezhi Yang y Jing Shen. "Frequency Variability Feature for Life Signs Detection and Localization in Natural Disasters". Remote Sensing 13, n.º 4 (21 de febrero de 2021): 796. http://dx.doi.org/10.3390/rs13040796.
Texto completoHan, Mianzhe, Yuki Todo y Zheng Tang. "An Artificial Visual System for Three Dimensional Motion Direction Detection". Electronics 11, n.º 24 (13 de diciembre de 2022): 4161. http://dx.doi.org/10.3390/electronics11244161.
Texto completoLuo, Linbo, Yuanjing Li, Haiyan Yin, Shangwei Xie, Ruimin Hu y Wentong Cai. "Crowd-Level Abnormal Behavior Detection via Multi-Scale Motion Consistency Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 7 (26 de junio de 2023): 8984–92. http://dx.doi.org/10.1609/aaai.v37i7.26079.
Texto completoLiu, Hairen y Wei Zhang. "Data Analysis of Athletes’ Physiological Indexes in Training and Competition Based on Wireless Sensor Network". Journal of Sensors 2021 (18 de septiembre de 2021): 1–11. http://dx.doi.org/10.1155/2021/5923893.
Texto completoGüttler, Jörg, Dany Bassily, Christos Georgoulas, Thomas Linner y Thomas Bock. "Unobtrusive Tremor Detection While Gesture Controlling a Robotic Arm". Journal of Robotics and Mechatronics 27, n.º 1 (20 de febrero de 2015): 103–4. http://dx.doi.org/10.20965/jrm.2015.p0103.
Texto completoDOUKAS, CHARALAMPOS y ILIAS MAGLOGIANNIS. "ADVANCED CLASSIFICATION AND RULES-BASED EVALUATION OF MOTION, VISUAL AND BIOSIGNAL DATA FOR PATIENT FALL INCIDENT DETECTION". International Journal on Artificial Intelligence Tools 19, n.º 02 (abril de 2010): 175–91. http://dx.doi.org/10.1142/s0218213010000108.
Texto completoVolpes, Gabriele, Simone Valenti, Giuseppe Genova, Chiara Barà, Antonino Parisi, Luca Faes, Alessandro Busacca y Riccardo Pernice. "Wearable Ring-Shaped Biomedical Device for Physiological Monitoring through Finger-Based Acquisition of Electrocardiographic, Photoplethysmographic, and Galvanic Skin Response Signals: Design and Preliminary Measurements". Biosensors 14, n.º 4 (20 de abril de 2024): 205. http://dx.doi.org/10.3390/bios14040205.
Texto completoDharmansyah, Dhika. "LITERATURE REVIEW: DESIGN OF INTERNET OF HEALTH THINGS (IOHT) MODEL FOR FALL RISK DETECTION IN ELDERLY AT HOME". Journal of Nursing Culture and Technology 1, n.º 1 (1 de mayo de 2024): 30–36. https://doi.org/10.70049/jnctech.v1i1.8.
Texto completoTesis sobre el tema "Physiological motion detection"
Serieyssol, Alizée. "Correction des mouvements physiologiques sans appareillage externe en TEP : applications aux acquisitions à faible statistique pour la radioembolisation hépatique et la cardiologie". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0355.
Texto completoPositron emission tomography (PET) is an essential imaging modality for diagnosis and therapeutic follow-up in oncology. Physiological motion can degrade image quality and affect the diagnostic accuracy and quantification of PET images. This research program focuses on the detection of physiological motion (respiration and cardiac beating) without the use of an external device for very specific clinical applications. Methods to compensate for these movements will be developed to reconstruct an image corrected for these effects. Two clinical applications have been identified to evaluate the implemented methods. The first concerns hepatic radioembolization based on 90Y PET imaging, which requires the development of methods to detect and correct for respiratory motion for data with very low counting statistics. The second is 18F-FDG cardiac PET imaging, involving the development of a method for the dual detection of respiratory and cardiac movements, as well as methods for compensating for these two physiological movements. The results obtained with the proposed detection methods are compared with those obtained with external devices: a bellow (46-265679G-1, GE HealthCare) for the respiratory signals and an electrocardiogram (ECG) for the cardiac signal. Two correction methods are proposed for hepatic radioembolization and their impact on post-treatment dosimetry was evaluated in comparison with results obtained without the use of correction methods. The first method developed consists in keeping only the quiescent phase of the respiratory cycle, while the second uses all the statistics, proposing a rigid registration between all the respiration phases. Two other methods have been implemented for cardiology, based on the estimation of 3D deformation vectors obtained from cardiac and respiratory triggers calculated with the proposed detection method. The first method estimates these deformation vectors through a rigid registration between the images of each respiratory cycle, while the second method uses the different volumes of the heart. In this method, 3D deformation vectors are calculated by identifying the end diastolic and end systolic volumes. The efficacity of these methods is evaluated by comparing the images obtained using these methods with the non-motion-corrected images, as well as with the image reconstructed with the correction method used in clinical routine on PET/CT cameras (Q.Static algorithm, General Electric HealthCare). The obtained results demonstrate a real improvement in terms of image quality, with better results for cardiological images than those obtained with the correction method used in clinical routine. Dosimetric results obtained with both correction methods for Yttrium-90 data show an increase of the tumor dose
Wu, Ping-Hsun y 吳秉勳. "Design of Phase- and Self-Injection-Locked Radar and Its Application in Detection of Physiological Motions". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/05261518445379753062.
Texto completo國立臺灣大學
電信工程學研究所
101
The phase- and self-injection-locked radar is presented in this dissertation for robust detection of physiological motions with high sensitivity. The innovative method injects the Doppler phase-modulated echo signal back into a phase-locked oscillator and obtains the baseband signal by directly sampling the voltage-controlled oscillator tuning voltage controlled by the phase-locked loop without any demodulation circuits. Phase noise analysis indicates that the proposed radar has the advantages of both the phase-locked oscillators and self-injection-locked oscillators to achieve superior signal-to-noise ratio gain against the low-frequency phase noise in the bandwidth containing the physiological motion information. Consequently, the proposed radar can serve for long-range detections with less transmitted power. In addition, this dissertation addresses the dc offset and the null point problems, which are two major challenging issues for conventional Doppler radar designs, in regard to reliable detection. The dc offset caused by clutter reflections and circuit imperfections is eliminated simply using a dual-tuning voltage-controlled oscillator without sophisticated clutter cancellation techniques. Analysis based on the classic injection locking equation shows that the dc offset can be removed without sensitivity degradation. Path-diversity transmission that switches between orthogonal self-injection-locked loops is employed to eliminate null points and reduce average transmitted power. Several prototype circuits are designed to justify the theory and design equations. Experiments confirm successful detection of physiological motions from a distance of 4 meters with −22 dBm average transmitted power.
Libros sobre el tema "Physiological motion detection"
Kautz, Dirk. Micro-iontophoretic studies on the physiological mechanism of auditory motion-direction: Detection in the inferior colliculus of the barn owl (Tyto alba). [s.l.]: [s.n.], 1997.
Buscar texto completoOffice, General Accounting. Air pollution: Improvements needed in detecting and preventing violations : report to the chairman, Subcommittee on Oversight and Investigations, Committee on Energy and Commerce, House of Representatives. Washington, D.C: GAO, 1990.
Buscar texto completoCapítulos de libros sobre el tema "Physiological motion detection"
Okawai, Hiroaki y Mitsuru Takashima. "Physiological Detection of Satisfaction for Services by Body Motion Wave Revealing Unconscious Responses Reflecting Activities of Autonomic Nervous Systems". En Serviceology for Smart Service System, 279–86. Tokyo: Springer Japan, 2017. http://dx.doi.org/10.1007/978-4-431-56074-6_31.
Texto completoHemlathadhevi, A., Anu Disney D., Nishant Behar, Lalit Mohan Pant, C. M. Naveen Kumar y Madiha Tahreem. "Framework Towards Detection of Stress Level Through Classifying Physiological Signals Using Blockchain Technology". En Advances in Computational Intelligence and Robotics, 403–16. IGI Global, 2024. https://doi.org/10.4018/979-8-3693-7367-5.ch027.
Texto completoGaggioli Andrea, Pioggia Giovanni, Tartarisco Gennaro, Baldus Giovanni, Ferro Marcello, Cipresso Pietro, Serino Silvia et al. "A System for Automatic Detection of Momentary Stress in Naturalistic Settings". En Studies in Health Technology and Informatics. IOS Press, 2012. https://doi.org/10.3233/978-1-61499-121-2-182.
Texto completoHIRAHARA, Makoto y Takashi NAGANO. "A NEURAL NETWORK FOR VISUAL MOTION DETECTION THAT CAN EXPLAIN PSYCHOPHYSICAL AND PHYSIOLOGICAL PHENOMENA". En Artificial Neural Networks, 1393–96. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-444-89178-5.50096-8.
Texto completoS.M, Revathi, Srinivasan R, Balamurugan C.R y Kareemullah H. "Driver Stress Detection Based on IOT Motion Sensor Using Wearable Glove". En Applications of Artificial Intelligence and Machine Learning in Healthcare. Technoarete Publishing, 2022. http://dx.doi.org/10.36647/aaimlh/2022.01.b1.ch002.
Texto completoAbadi, Richard V. "Perception with Unstable Fixation". En Advances in Understanding Mechanisms and Treatment of Infantile Forms of Nystagmus, 23–32. Oxford University PressNew York, NY, 2008. http://dx.doi.org/10.1093/oso/9780195342185.003.0003.
Texto completoSenthilkumar, Laushya, Joana M. Warnecke, Julian Bollmann y Thomas M. Deserno. "Robust In-Vehicle Signal Quality Assessment Using Multimodal Signal Fusion". En Studies in Health Technology and Informatics. IOS Press, 2024. http://dx.doi.org/10.3233/shti240576.
Texto completoNEGRINI Alberto, NEGRINI Stefano y SANTAMBROGIO Giorgio C. "Data Variability in the Analysis of Spinal Deformity: a Study Performed by means of the AUSCAN System". En Studies in Health Technology and Informatics. IOS Press, 1995. https://doi.org/10.3233/978-1-60750-859-5-101.
Texto completoRajamohana S. P., Dharani A., Anushree P., Santhiya B. y Umamaheswari K. "Machine Learning Techniques for Healthcare Applications". En Advances in Social Networking and Online Communities, 236–51. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7522-1.ch012.
Texto completoRajamohana S. P., Dharani A., Anushree P., Santhiya B. y Umamaheswari K. "Machine Learning Techniques for Healthcare Applications". En Research Anthology on Medical Informatics in Breast and Cervical Cancer, 386–402. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-7136-4.ch021.
Texto completoActas de conferencias sobre el tema "Physiological motion detection"
Uddin, Md Taufeeq y Shaun Canavan. "Synthesizing Physiological and Motion Data for Stress and Meditation Detection". En 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW). IEEE, 2019. http://dx.doi.org/10.1109/aciiw.2019.8925245.
Texto completoPerdana, Rizky Naufal, Budhi Irawan, Casi Setianingsih, Dian Rezky Wulandari, Ivan Satrio Pamungkas, Fajri Nurfauzan, Adinda Ophelia Putri Sakinah y Muhammad Raihan Ramadhan. "Design of Smartdoor for Live Face Detection Based on Image Processing Using Physiological Motion Detection". En 2022 2nd International Seminar on Machine Learning, Optimization, and Data Science (ISMODE). IEEE, 2022. http://dx.doi.org/10.1109/ismode56940.2022.10180411.
Texto completoPeng, Zheng, Ilde Lorato, Xi Long, Rong-Hao Liang, Deedee Kommers, Peter Andriessen, Ward Cottaar, Sander Stuijk y Carola van Pul. "Body Motion Detection in Neonates Based on Motion Artifacts in Physiological Signals from a Clinical Patient Monitor". En 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2021. http://dx.doi.org/10.1109/embc46164.2021.9630133.
Texto completoGupta, Sanskriti y Rekha Vig. "Detection and Correction of Head Motion and Physiological Artifacts in BOLD fMRI: A Study". En 2019 9th International Conference on Cloud Computing, Data Science & Engineering (Confluence). IEEE, 2019. http://dx.doi.org/10.1109/confluence.2019.8776963.
Texto completoMa, Zheren, Brandon C. Li, Zeyu Yan, Dongmei Chen y Wei Li. "Wearable Sleepiness Detection Based on Characterization of Physiological Dynamics". En ASME 2016 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/dscc2016-9849.
Texto completoRay, Arkaprova, Iman Habibagahi y Aydin Babakhani. "Fully Wireless and Batteryless Localization and Physiological Motion Detection System for Point-of-care Biomedical Applications". En 2022 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2022. http://dx.doi.org/10.1109/biocas54905.2022.9948647.
Texto completoGalaup, Clement, Lama Séoud y Patrice Renaud. "Multimodal HCI: a review of computational tools and their relevance to the detection of sexual presence". En Intelligent Human Systems Integration (IHSI 2024) Integrating People and Intelligent Systems. AHFE International, 2024. http://dx.doi.org/10.54941/ahfe1004477.
Texto completoPungu Mwange, Marie-Anne, Fabien Rogister y Luka Rukonic. "Measuring driving simulator adaptation using EDA". En 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1001489.
Texto completoSilva, Leonardo, Rafael Lima, Giovani Lucafo, Italo Sandoval, Pedro Garcia Freitas y Otávio A. B. Penatti. "Photoplethysmography Signal Quality Assessment using Attentive-CNN Models". En Simpósio Brasileiro de Computação Aplicada à Saúde. Sociedade Brasileira de Computação - SBC, 2024. http://dx.doi.org/10.5753/sbcas.2024.2206.
Texto completoKretzschmar, Florian, Matthias Beggiato y Alois Pichler. "Detection of Discomfort in Autonomous Driving via Stochastic Approximation". En 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1002437.
Texto completo