Artículos de revistas sobre el tema "Physics-Informed neural network"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Physics-Informed neural network".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Hofmann, Tobias, Jacob Hamar, Marcel Rogge, Christoph Zoerr, Simon Erhard y Jan Philipp Schmidt. "Physics-Informed Neural Networks for State of Health Estimation in Lithium-Ion Batteries". Journal of The Electrochemical Society 170, n.º 9 (1 de septiembre de 2023): 090524. http://dx.doi.org/10.1149/1945-7111/acf0ef.
Texto completoKarakonstantis, Xenofon, Diego Caviedes-Nozal, Antoine Richard y Efren Fernandez-Grande. "Room impulse response reconstruction with physics-informed deep learning". Journal of the Acoustical Society of America 155, n.º 2 (1 de febrero de 2024): 1048–59. http://dx.doi.org/10.1121/10.0024750.
Texto completoKenzhebek, Y., T. S. Imankulov y D. Zh Akhmed-Zaki. "PREDICTION OF OIL PRODUCTION USING PHYSICS-INFORMED NEURAL NETWORKS". BULLETIN Series of Physics & Mathematical Sciences 76, n.º 4 (15 de diciembre de 2021): 45–50. http://dx.doi.org/10.51889/2021-4.1728-7901.06.
Texto completoPu, Ruilong y Xinlong Feng. "Physics-Informed Neural Networks for Solving Coupled Stokes–Darcy Equation". Entropy 24, n.º 8 (11 de agosto de 2022): 1106. http://dx.doi.org/10.3390/e24081106.
Texto completoYoon, Seunghyun, Yongsung Park y Woojae Seong. "Improving mode extraction with physics-informed neural network". Journal of the Acoustical Society of America 154, n.º 4_supplement (1 de octubre de 2023): A339—A340. http://dx.doi.org/10.1121/10.0023729.
Texto completoStenkin, Dmitry y Vladimir Gorbachenko. "Mathematical Modeling on a Physics-Informed Radial Basis Function Network". Mathematics 12, n.º 2 (11 de enero de 2024): 241. http://dx.doi.org/10.3390/math12020241.
Texto completoSchmid, Johannes D., Philipp Bauerschmidt, Caglar Gurbuz y Steffen Marburg. "Physics-informed neural networks for characterization of structural dynamic boundary conditions". Journal of the Acoustical Society of America 154, n.º 4_supplement (1 de octubre de 2023): A99. http://dx.doi.org/10.1121/10.0022923.
Texto completoZhai, Hanfeng, Quan Zhou y Guohui Hu. "Predicting micro-bubble dynamics with semi-physics-informed deep learning". AIP Advances 12, n.º 3 (1 de marzo de 2022): 035153. http://dx.doi.org/10.1063/5.0079602.
Texto completoKarakonstantis, Xenofon y Efren Fernandez-Grande. "Advancing sound field analysis with physics-informed neural networks". Journal of the Acoustical Society of America 154, n.º 4_supplement (1 de octubre de 2023): A98. http://dx.doi.org/10.1121/10.0022920.
Texto completoPannekoucke, Olivier y Ronan Fablet. "PDE-NetGen 1.0: from symbolic partial differential equation (PDE) representations of physical processes to trainable neural network representations". Geoscientific Model Development 13, n.º 7 (30 de julio de 2020): 3373–82. http://dx.doi.org/10.5194/gmd-13-3373-2020.
Texto completoSchmid, Johannes. "Physics-informed neural networks for solving the Helmholtz equation". INTER-NOISE and NOISE-CON Congress and Conference Proceedings 267, n.º 1 (5 de noviembre de 2023): 265–68. http://dx.doi.org/10.3397/no_2023_0049.
Texto completoYoon, Seunghyun, Yongsung Park, Peter Gerstoft y Woojae Seong. "Predicting ocean pressure field with a physics-informed neural network". Journal of the Acoustical Society of America 155, n.º 3 (1 de marzo de 2024): 2037–49. http://dx.doi.org/10.1121/10.0025235.
Texto completoYoon, Seunghyun, Yongsung Park, Peter Gerstoft y Woojae Seong. "Physics-informed neural network for predicting unmeasured ocean acoustic pressure field". Journal of the Acoustical Society of America 154, n.º 4_supplement (1 de octubre de 2023): A97. http://dx.doi.org/10.1121/10.0022916.
Texto completoHassanaly, Malik, Peter J. Weddle, Kandler Smith, Subhayan De, Alireza Doostan y Ryan King. "Physics-Informed Neural Network Modeling of Li-Ion Batteries". ECS Meeting Abstracts MA2022-02, n.º 3 (9 de octubre de 2022): 174. http://dx.doi.org/10.1149/ma2022-023174mtgabs.
Texto completoGuler Bayazit, Nilgun. "Physics informed neural network consisting of two decoupled stages". Engineering Science and Technology, an International Journal 46 (octubre de 2023): 101489. http://dx.doi.org/10.1016/j.jestch.2023.101489.
Texto completoSha, Yanliang, Jun Lan, Yida Li y Quan Chen. "A Physics-Informed Recurrent Neural Network for RRAM Modeling". Electronics 12, n.º 13 (2 de julio de 2023): 2906. http://dx.doi.org/10.3390/electronics12132906.
Texto completoLiu, Chen-Xu, Xinghao Wang, Weiming Liu, Yi-Fan Yang, Gui-Lan Yu y Zhanli Liu. "A physics-informed neural network for Kresling origami structures". International Journal of Mechanical Sciences 269 (mayo de 2024): 109080. http://dx.doi.org/10.1016/j.ijmecsci.2024.109080.
Texto completoOlivieri, Marco, Mirco Pezzoli, Fabio Antonacci y Augusto Sarti. "A Physics-Informed Neural Network Approach for Nearfield Acoustic Holography". Sensors 21, n.º 23 (25 de noviembre de 2021): 7834. http://dx.doi.org/10.3390/s21237834.
Texto completoHooshyar, Saman y Arash Elahi. "Sequencing Initial Conditions in Physics-Informed Neural Networks". Journal of Chemistry and Environment 3, n.º 1 (26 de marzo de 2024): 98–108. http://dx.doi.org/10.56946/jce.v3i1.345.
Texto completoOluwasakin, Ebenezer O. y Abdul Q. M. Khaliq. "Optimizing Physics-Informed Neural Network in Dynamic System Simulation and Learning of Parameters". Algorithms 16, n.º 12 (28 de noviembre de 2023): 547. http://dx.doi.org/10.3390/a16120547.
Texto completoLiu, Zhixiang, Yuanji Chen, Ge Song, Wei Song y Jingxiang Xu. "Combination of Physics-Informed Neural Networks and Single-Relaxation-Time Lattice Boltzmann Method for Solving Inverse Problems in Fluid Mechanics". Mathematics 11, n.º 19 (1 de octubre de 2023): 4147. http://dx.doi.org/10.3390/math11194147.
Texto completoSilva, Roberto Mamud Guedes da, Helio dos Santos Migon y Antônio José da Silva Neto. "Parameter estimation in the pollutant dispersion problem with Physics-Informed Neural Networks". Ciência e Natura 45, esp. 3 (1 de diciembre de 2023): e74615. http://dx.doi.org/10.5902/2179460x74615.
Texto completoLi, Jianfeng, Liangying Zhou, Jingwei Sun y Guangzhong Sun. "Physically plausible and conservative solutions to Navier-Stokes equations using Physics-Informed CNNs". JUSTC 53 (2023): 1. http://dx.doi.org/10.52396/justc-2022-0174.
Texto completoTarkhov, Dmitriy, Tatiana Lazovskaya y Galina Malykhina. "Constructing Physics-Informed Neural Networks with Architecture Based on Analytical Modification of Numerical Methods by Solving the Problem of Modelling Processes in a Chemical Reactor". Sensors 23, n.º 2 (6 de enero de 2023): 663. http://dx.doi.org/10.3390/s23020663.
Texto completoLeung, Wing Tat, Guang Lin y Zecheng Zhang. "NH-PINN: Neural homogenization-based physics-informed neural network for multiscale problems". Journal of Computational Physics 470 (diciembre de 2022): 111539. http://dx.doi.org/10.1016/j.jcp.2022.111539.
Texto completoAntonion, Klapa, Xiao Wang, Maziar Raissi y Laurn Joshie. "Machine Learning Through Physics–Informed Neural Networks: Progress and Challenges". Academic Journal of Science and Technology 9, n.º 1 (20 de enero de 2024): 46–49. http://dx.doi.org/10.54097/b1d21816.
Texto completoCao, Fujun, Xiaobin Guo, Fei Gao y Dongfang Yuan. "Deep Learning Nonhomogeneous Elliptic Interface Problems by Soft Constraint Physics-Informed Neural Networks". Mathematics 11, n.º 8 (13 de abril de 2023): 1843. http://dx.doi.org/10.3390/math11081843.
Texto completoGrubas, Serafim I., Sergey V. Yaskevich y Anton A. Duchkov. "LOCALIZATION OF MICROSEISMIC EVENTS USING PHYSICS-INFORMED NEURAL NETWORK SOLUTION TO THE EIKONAL EQUATION". Interexpo GEO-Siberia 2, n.º 2 (21 de mayo de 2021): 32–38. http://dx.doi.org/10.33764/2618-981x-2021-2-2-32-38.
Texto completoZhi, Peng, Yuching Wu, Cheng Qi, Tao Zhu, Xiao Wu y Hongyu Wu. "Surrogate-Based Physics-Informed Neural Networks for Elliptic Partial Differential Equations". Mathematics 11, n.º 12 (15 de junio de 2023): 2723. http://dx.doi.org/10.3390/math11122723.
Texto completoRafiq, Muhammad, Ghazala Rafiq y Gyu Sang Choi. "DSFA-PINN: Deep Spectral Feature Aggregation Physics Informed Neural Network". IEEE Access 10 (2022): 22247–59. http://dx.doi.org/10.1109/access.2022.3153056.
Texto completoRazakh, Taufeq Mohammed, Beibei Wang, Shane Jackson, Rajiv K. Kalia, Aiichiro Nakano, Ken-ichi Nomura y Priya Vashishta. "PND: Physics-informed neural-network software for molecular dynamics applications". SoftwareX 15 (julio de 2021): 100789. http://dx.doi.org/10.1016/j.softx.2021.100789.
Texto completoJi, Weiqi, Weilun Qiu, Zhiyu Shi, Shaowu Pan y Sili Deng. "Stiff-PINN: Physics-Informed Neural Network for Stiff Chemical Kinetics". Journal of Physical Chemistry A 125, n.º 36 (31 de agosto de 2021): 8098–106. http://dx.doi.org/10.1021/acs.jpca.1c05102.
Texto completoChakraborty, Souvik. "Transfer learning based multi-fidelity physics informed deep neural network". Journal of Computational Physics 426 (febrero de 2021): 109942. http://dx.doi.org/10.1016/j.jcp.2020.109942.
Texto completoMeng, Xuhui, Zhen Li, Dongkun Zhang y George Em Karniadakis. "PPINN: Parareal physics-informed neural network for time-dependent PDEs". Computer Methods in Applied Mechanics and Engineering 370 (octubre de 2020): 113250. http://dx.doi.org/10.1016/j.cma.2020.113250.
Texto completoDalton, David, Dirk Husmeier y Hao Gao. "Physics-informed graph neural network emulation of soft-tissue mechanics". Computer Methods in Applied Mechanics and Engineering 417 (diciembre de 2023): 116351. http://dx.doi.org/10.1016/j.cma.2023.116351.
Texto completoLiu, Yu y Wentao Ma. "Gradient auxiliary physics-informed neural network for nonlinear biharmonic equation". Engineering Analysis with Boundary Elements 157 (diciembre de 2023): 272–82. http://dx.doi.org/10.1016/j.enganabound.2023.09.013.
Texto completoDu, Meiyuan, Chi Zhang, Sheng Xie, Fang Pu, Da Zhang y Deyu Li. "Investigation on aortic hemodynamics based on physics-informed neural network". Mathematical Biosciences and Engineering 20, n.º 7 (2023): 11545–67. http://dx.doi.org/10.3934/mbe.2023512.
Texto completoNgo, Quang-Ha, Bang L. H. Nguyen, Tuyen V. Vu, Jianhua Zhang y Tuan Ngo. "Physics-informed graphical neural network for power system state estimation". Applied Energy 358 (marzo de 2024): 122602. http://dx.doi.org/10.1016/j.apenergy.2023.122602.
Texto completoma, fei, Sipei Zhao y Thushara Abhayapala. "Physics-informed neural network assisted spherical microphone array signal processing". Journal of the Acoustical Society of America 154, n.º 4_supplement (1 de octubre de 2023): A182. http://dx.doi.org/10.1121/10.0023200.
Texto completoYin, Jichao, Ziming Wen, Shuhao Li, Yaya Zhang y Hu Wang. "Dynamically configured physics-informed neural network in topology optimization applications". Computer Methods in Applied Mechanics and Engineering 426 (junio de 2024): 117004. http://dx.doi.org/10.1016/j.cma.2024.117004.
Texto completoXypakis, Emmanouil, Valeria deTurris, Fabrizio Gala, Giancarlo Ruocco y Marco Leonetti. "Physics-informed machine learning for microscopy". EPJ Web of Conferences 266 (2022): 04007. http://dx.doi.org/10.1051/epjconf/202226604007.
Texto completoLee, Brandon M. y David R. Dowling. "Training physics-informed neural networks to directly predict acoustic field values in simple environments". Journal of the Acoustical Society of America 152, n.º 4 (octubre de 2022): A49. http://dx.doi.org/10.1121/10.0015499.
Texto completoZhang, Guangtao, Huiyu Yang, Guanyu Pan, Yiting Duan, Fang Zhu y Yang Chen. "Constrained Self-Adaptive Physics-Informed Neural Networks with ResNet Block-Enhanced Network Architecture". Mathematics 11, n.º 5 (22 de febrero de 2023): 1109. http://dx.doi.org/10.3390/math11051109.
Texto completoUsama, Muhammad, Rui Ma, Jason Hart y Mikaela Wojcik. "Physics-Informed Neural Networks (PINNs)-Based Traffic State Estimation: An Application to Traffic Network". Algorithms 15, n.º 12 (27 de noviembre de 2022): 447. http://dx.doi.org/10.3390/a15120447.
Texto completoSilva Garzon, Camilo Fernando, Philip Bonnaire, Nguyen Anh Khoa Doan, Korbinian Niebler y Camilo Fernando Silva. "Towards reconstruction of acoustic fields via physics-informed neural networks". INTER-NOISE and NOISE-CON Congress and Conference Proceedings 265, n.º 3 (1 de febrero de 2023): 4773–82. http://dx.doi.org/10.3397/in_2022_0690.
Texto completoManikkan, Sreehari y Balaji Srinivasan. "Transfer physics informed neural network: a new framework for distributed physics informed neural networks via parameter sharing". Engineering with Computers, 19 de julio de 2022. http://dx.doi.org/10.1007/s00366-022-01703-9.
Texto completoDourado, Arinan y Felipe A. C. Viana. "Physics-Informed Neural Networks for Corrosion-Fatigue Prognosis". Annual Conference of the PHM Society 11, n.º 1 (22 de septiembre de 2019). http://dx.doi.org/10.36001/phmconf.2019.v11i1.814.
Texto completoLiu Jin-Pin, Wang Bing-Zhong, Chen Chuan-Sheng y Wang Ren. "Inverse design of microwave waveguide devices based on deep physics-informed neural networks". Acta Physica Sinica, 2023, 0. http://dx.doi.org/10.7498/aps.72.20230031.
Texto completoZapf, Bastian, Johannes Haubner, Miroslav Kuchta, Geir Ringstad, Per Kristian Eide y Kent-Andre Mardal. "Investigating molecular transport in the human brain from MRI with physics-informed neural networks". Scientific Reports 12, n.º 1 (14 de septiembre de 2022). http://dx.doi.org/10.1038/s41598-022-19157-w.
Texto completoFang Bo-Lang, Wang Jian-Guo y Feng GuoBin. "Centroid prediction using physics informed neural networks". Acta Physica Sinica, 2022, 0. http://dx.doi.org/10.7498/aps.71.20220670.
Texto completo