Artículos de revistas sobre el tema "Physics-Informed neural network"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Physics-Informed neural network".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Trahan, Corey, Mark Loveland y Samuel Dent. "Quantum Physics-Informed Neural Networks". Entropy 26, n.º 8 (30 de julio de 2024): 649. http://dx.doi.org/10.3390/e26080649.
Texto completoWang, Jing, Yubo Li, Anping Wu, Zheng Chen, Jun Huang, Qingfeng Wang y Feng Liu. "Multi-Step Physics-Informed Deep Operator Neural Network for Directly Solving Partial Differential Equations". Applied Sciences 14, n.º 13 (25 de junio de 2024): 5490. http://dx.doi.org/10.3390/app14135490.
Texto completoHofmann, Tobias, Jacob Hamar, Marcel Rogge, Christoph Zoerr, Simon Erhard y Jan Philipp Schmidt. "Physics-Informed Neural Networks for State of Health Estimation in Lithium-Ion Batteries". Journal of The Electrochemical Society 170, n.º 9 (1 de septiembre de 2023): 090524. http://dx.doi.org/10.1149/1945-7111/acf0ef.
Texto completoLi, Zhenyu. "A Review of Physics-Informed Neural Networks". Applied and Computational Engineering 133, n.º 1 (24 de enero de 2025): 165–73. https://doi.org/10.54254/2755-2721/2025.20636.
Texto completoKarakonstantis, Xenofon, Diego Caviedes-Nozal, Antoine Richard y Efren Fernandez-Grande. "Room impulse response reconstruction with physics-informed deep learning". Journal of the Acoustical Society of America 155, n.º 2 (1 de febrero de 2024): 1048–59. http://dx.doi.org/10.1121/10.0024750.
Texto completoPu, Ruilong y Xinlong Feng. "Physics-Informed Neural Networks for Solving Coupled Stokes–Darcy Equation". Entropy 24, n.º 8 (11 de agosto de 2022): 1106. http://dx.doi.org/10.3390/e24081106.
Texto completoKenzhebek, Y., T. S. Imankulov y D. Zh Akhmed-Zaki. "PREDICTION OF OIL PRODUCTION USING PHYSICS-INFORMED NEURAL NETWORKS". BULLETIN Series of Physics & Mathematical Sciences 76, n.º 4 (15 de diciembre de 2021): 45–50. http://dx.doi.org/10.51889/2021-4.1728-7901.06.
Texto completoHou, Shubo, Wenchao Wu y Xiuhong Hao. "Physics-informed neural network for simulating magnetic field of permanent magnet". Journal of Physics: Conference Series 2853, n.º 1 (1 de octubre de 2024): 012018. http://dx.doi.org/10.1088/1742-6596/2853/1/012018.
Texto completoYoon, Seunghyun, Yongsung Park y Woojae Seong. "Improving mode extraction with physics-informed neural network". Journal of the Acoustical Society of America 154, n.º 4_supplement (1 de octubre de 2023): A339—A340. http://dx.doi.org/10.1121/10.0023729.
Texto completoPan, Cunliang, Shi Feng, Shengyang Tao, Hongwu Zhang, Yonggang Zheng y Hongfei Ye. "Physics-Informed Neural Network for Young-Laplace Equation". International Conference on Computational & Experimental Engineering and Sciences 30, n.º 1 (2024): 1. http://dx.doi.org/10.32604/icces.2024.011132.
Texto completoSchmid, Johannes D., Philipp Bauerschmidt, Caglar Gurbuz y Steffen Marburg. "Physics-informed neural networks for characterization of structural dynamic boundary conditions". Journal of the Acoustical Society of America 154, n.º 4_supplement (1 de octubre de 2023): A99. http://dx.doi.org/10.1121/10.0022923.
Texto completoStenkin, Dmitry y Vladimir Gorbachenko. "Mathematical Modeling on a Physics-Informed Radial Basis Function Network". Mathematics 12, n.º 2 (11 de enero de 2024): 241. http://dx.doi.org/10.3390/math12020241.
Texto completoZhai, Hanfeng, Quan Zhou y Guohui Hu. "Predicting micro-bubble dynamics with semi-physics-informed deep learning". AIP Advances 12, n.º 3 (1 de marzo de 2022): 035153. http://dx.doi.org/10.1063/5.0079602.
Texto completoKarakonstantis, Xenofon y Efren Fernandez-Grande. "Advancing sound field analysis with physics-informed neural networks". Journal of the Acoustical Society of America 154, n.º 4_supplement (1 de octubre de 2023): A98. http://dx.doi.org/10.1121/10.0022920.
Texto completoVo, Van Truong, Samad Noeiaghdam, Denis Sidorov, Aliona Dreglea y Liguo Wang. "Solving Nonlinear Energy Supply and Demand System Using Physics-Informed Neural Networks". Computation 13, n.º 1 (8 de enero de 2025): 13. https://doi.org/10.3390/computation13010013.
Texto completoDong, Chenghao. "Solving Differential Equations with Physics-Informed Neural Networks". Theoretical and Natural Science 87, n.º 1 (15 de enero de 2025): 137–46. https://doi.org/10.54254/2753-8818/2025.20346.
Texto completoKaliuzhniak, Anastasiia, Oleksii Kudi, Yuriy Belokon y Dmytro Kruglyak. "Developing of neural network computing methods for solving inverse elasticity problems". Eastern-European Journal of Enterprise Technologies 6, n.º 7 (132) (30 de diciembre de 2024): 45–52. https://doi.org/10.15587/1729-4061.2024.313795.
Texto completoPannekoucke, Olivier y Ronan Fablet. "PDE-NetGen 1.0: from symbolic partial differential equation (PDE) representations of physical processes to trainable neural network representations". Geoscientific Model Development 13, n.º 7 (30 de julio de 2020): 3373–82. http://dx.doi.org/10.5194/gmd-13-3373-2020.
Texto completoSchmid, Johannes. "Physics-informed neural networks for solving the Helmholtz equation". INTER-NOISE and NOISE-CON Congress and Conference Proceedings 267, n.º 1 (5 de noviembre de 2023): 265–68. http://dx.doi.org/10.3397/no_2023_0049.
Texto completoYoon, Seunghyun, Yongsung Park, Peter Gerstoft y Woojae Seong. "Physics-informed neural network for predicting unmeasured ocean acoustic pressure field". Journal of the Acoustical Society of America 154, n.º 4_supplement (1 de octubre de 2023): A97. http://dx.doi.org/10.1121/10.0022916.
Texto completoYoon, Seunghyun, Yongsung Park, Peter Gerstoft y Woojae Seong. "Predicting ocean pressure field with a physics-informed neural network". Journal of the Acoustical Society of America 155, n.º 3 (1 de marzo de 2024): 2037–49. http://dx.doi.org/10.1121/10.0025235.
Texto completoHassanaly, Malik, Peter J. Weddle, Corey R. Randall, Eric J. Dufek y Kandler Smith. "Rapid Inverse Parameter Inference Using Physics-Informed Neural Networks". ECS Meeting Abstracts MA2024-01, n.º 2 (9 de agosto de 2024): 345. http://dx.doi.org/10.1149/ma2024-012345mtgabs.
Texto completoHassanaly, Malik, Peter J. Weddle, Kandler Smith, Subhayan De, Alireza Doostan y Ryan King. "Physics-Informed Neural Network Modeling of Li-Ion Batteries". ECS Meeting Abstracts MA2022-02, n.º 3 (9 de octubre de 2022): 174. http://dx.doi.org/10.1149/ma2022-023174mtgabs.
Texto completoGuler Bayazit, Nilgun. "Physics informed neural network consisting of two decoupled stages". Engineering Science and Technology, an International Journal 46 (octubre de 2023): 101489. http://dx.doi.org/10.1016/j.jestch.2023.101489.
Texto completoSha, Yanliang, Jun Lan, Yida Li y Quan Chen. "A Physics-Informed Recurrent Neural Network for RRAM Modeling". Electronics 12, n.º 13 (2 de julio de 2023): 2906. http://dx.doi.org/10.3390/electronics12132906.
Texto completoLiu, Chen-Xu, Xinghao Wang, Weiming Liu, Yi-Fan Yang, Gui-Lan Yu y Zhanli Liu. "A physics-informed neural network for Kresling origami structures". International Journal of Mechanical Sciences 269 (mayo de 2024): 109080. http://dx.doi.org/10.1016/j.ijmecsci.2024.109080.
Texto completoCosta, Erbet Almeida, Carine Menezes Rebello, Vinícius Viena Santana y Idelfonso B. R. Nogueira. "Physics-informed neural network uncertainty assessment through Bayesian inference." IFAC-PapersOnLine 58, n.º 14 (2024): 652–57. http://dx.doi.org/10.1016/j.ifacol.2024.08.411.
Texto completoShi, Yan y Michael Beer. "Physics-informed neural network classification framework for reliability analysis". Expert Systems with Applications 258 (diciembre de 2024): 125207. http://dx.doi.org/10.1016/j.eswa.2024.125207.
Texto completoCai, Zemin, Xiangqi Lin, Tianshu Liu, Fan Wu, Shizhao Wang y Yun Liu. "Determining pressure from velocity via physics-informed neural network". European Journal of Mechanics - B/Fluids 109 (enero de 2025): 1–21. http://dx.doi.org/10.1016/j.euromechflu.2024.08.007.
Texto completoLiu, Xue, Wei Cheng, Ji Xing, Xuefeng Chen, Zhibin Zhao, Rongyong Zhang, Qian Huang et al. "Physics-informed Neural Network for system identification of rotors". IFAC-PapersOnLine 58, n.º 15 (2024): 307–12. http://dx.doi.org/10.1016/j.ifacol.2024.08.546.
Texto completoBerrone, Stefano y Moreno Pintore. "Meshfree Variational-Physics-Informed Neural Networks (MF-VPINN): An Adaptive Training Strategy". Algorithms 17, n.º 9 (19 de septiembre de 2024): 415. http://dx.doi.org/10.3390/a17090415.
Texto completoPonomarev, R. Yu, R. R. Ziazev, A. A. Leshchenko, R. R. Migmanov y M. I. Ivlev. "Flooding system optimization: Advantages of a hybrid approach to developing neural network filtration models". Actual Problems of Oil and Gas 15, n.º 4 (29 de diciembre de 2024): 349–63. https://doi.org/10.29222/ipng.2078-5712.2024-15-4.art3.
Texto completoLiu, Zhixiang, Yuanji Chen, Ge Song, Wei Song y Jingxiang Xu. "Combination of Physics-Informed Neural Networks and Single-Relaxation-Time Lattice Boltzmann Method for Solving Inverse Problems in Fluid Mechanics". Mathematics 11, n.º 19 (1 de octubre de 2023): 4147. http://dx.doi.org/10.3390/math11194147.
Texto completoHooshyar, Saman y Arash Elahi. "Sequencing Initial Conditions in Physics-Informed Neural Networks". Journal of Chemistry and Environment 3, n.º 1 (26 de marzo de 2024): 98–108. http://dx.doi.org/10.56946/jce.v3i1.345.
Texto completoSilva, Roberto Mamud Guedes da, Helio dos Santos Migon y Antônio José da Silva Neto. "Parameter estimation in the pollutant dispersion problem with Physics-Informed Neural Networks". Ciência e Natura 45, esp. 3 (1 de diciembre de 2023): e74615. http://dx.doi.org/10.5902/2179460x74615.
Texto completoOluwasakin, Ebenezer O. y Abdul Q. M. Khaliq. "Optimizing Physics-Informed Neural Network in Dynamic System Simulation and Learning of Parameters". Algorithms 16, n.º 12 (28 de noviembre de 2023): 547. http://dx.doi.org/10.3390/a16120547.
Texto completoTarkhov, Dmitriy, Tatiana Lazovskaya y Galina Malykhina. "Constructing Physics-Informed Neural Networks with Architecture Based on Analytical Modification of Numerical Methods by Solving the Problem of Modelling Processes in a Chemical Reactor". Sensors 23, n.º 2 (6 de enero de 2023): 663. http://dx.doi.org/10.3390/s23020663.
Texto completoOlivieri, Marco, Mirco Pezzoli, Fabio Antonacci y Augusto Sarti. "A Physics-Informed Neural Network Approach for Nearfield Acoustic Holography". Sensors 21, n.º 23 (25 de noviembre de 2021): 7834. http://dx.doi.org/10.3390/s21237834.
Texto completoLi, Jianfeng, Liangying Zhou, Jingwei Sun y Guangzhong Sun. "Physically plausible and conservative solutions to Navier-Stokes equations using Physics-Informed CNNs". JUSTC 53 (2023): 1. http://dx.doi.org/10.52396/justc-2022-0174.
Texto completoHariri, I., A. Radid y K. Rhofir. "Physics-informed neural networks for the reaction-diffusion Brusselator model". Mathematical Modeling and Computing 11, n.º 2 (2024): 448–54. http://dx.doi.org/10.23939/mmc2024.02.448.
Texto completoYonekura, Kazuo. "A Short Note on Physics-Guided GAN to Learn Physical Models without Gradients". Algorithms 17, n.º 7 (26 de junio de 2024): 279. http://dx.doi.org/10.3390/a17070279.
Texto completoAntonion, Klapa, Xiao Wang, Maziar Raissi y Laurn Joshie. "Machine Learning Through Physics–Informed Neural Networks: Progress and Challenges". Academic Journal of Science and Technology 9, n.º 1 (20 de enero de 2024): 46–49. http://dx.doi.org/10.54097/b1d21816.
Texto completoLeung, Wing Tat, Guang Lin y Zecheng Zhang. "NH-PINN: Neural homogenization-based physics-informed neural network for multiscale problems". Journal of Computational Physics 470 (diciembre de 2022): 111539. http://dx.doi.org/10.1016/j.jcp.2022.111539.
Texto completoCao, Fujun, Xiaobin Guo, Fei Gao y Dongfang Yuan. "Deep Learning Nonhomogeneous Elliptic Interface Problems by Soft Constraint Physics-Informed Neural Networks". Mathematics 11, n.º 8 (13 de abril de 2023): 1843. http://dx.doi.org/10.3390/math11081843.
Texto completoSingh, Vishal, Dineshkumar Harursampath, Sharanjeet Dhawan, Manoj Sahni, Sahaj Saxena y Rajnish Mallick. "Physics-Informed Neural Network for Solving a One-Dimensional Solid Mechanics Problem". Modelling 5, n.º 4 (18 de octubre de 2024): 1532–49. http://dx.doi.org/10.3390/modelling5040080.
Texto completoDuarte, D. H. G., P. D. S. de Lima y J. M. de Araújo. "Outlier-resistant physics-informed neural network". Physical Review E 111, n.º 2 (20 de febrero de 2025). https://doi.org/10.1103/physreve.111.l023302.
Texto completoManikkan, Sreehari y Balaji Srinivasan. "Transfer physics informed neural network: a new framework for distributed physics informed neural networks via parameter sharing". Engineering with Computers, 19 de julio de 2022. http://dx.doi.org/10.1007/s00366-022-01703-9.
Texto completoLiu Jin-Pin, Wang Bing-Zhong, Chen Chuan-Sheng y Wang Ren. "Inverse design of microwave waveguide devices based on deep physics-informed neural networks". Acta Physica Sinica, 2023, 0. http://dx.doi.org/10.7498/aps.72.20230031.
Texto completoDourado, Arinan y Felipe A. C. Viana. "Physics-Informed Neural Networks for Corrosion-Fatigue Prognosis". Annual Conference of the PHM Society 11, n.º 1 (22 de septiembre de 2019). http://dx.doi.org/10.36001/phmconf.2019.v11i1.814.
Texto completoZapf, Bastian, Johannes Haubner, Miroslav Kuchta, Geir Ringstad, Per Kristian Eide y Kent-Andre Mardal. "Investigating molecular transport in the human brain from MRI with physics-informed neural networks". Scientific Reports 12, n.º 1 (14 de septiembre de 2022). http://dx.doi.org/10.1038/s41598-022-19157-w.
Texto completo