Literatura académica sobre el tema "Physics-Informed neural network"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Physics-Informed neural network".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Physics-Informed neural network"
Trahan, Corey, Mark Loveland y Samuel Dent. "Quantum Physics-Informed Neural Networks". Entropy 26, n.º 8 (30 de julio de 2024): 649. http://dx.doi.org/10.3390/e26080649.
Texto completoWang, Jing, Yubo Li, Anping Wu, Zheng Chen, Jun Huang, Qingfeng Wang y Feng Liu. "Multi-Step Physics-Informed Deep Operator Neural Network for Directly Solving Partial Differential Equations". Applied Sciences 14, n.º 13 (25 de junio de 2024): 5490. http://dx.doi.org/10.3390/app14135490.
Texto completoHofmann, Tobias, Jacob Hamar, Marcel Rogge, Christoph Zoerr, Simon Erhard y Jan Philipp Schmidt. "Physics-Informed Neural Networks for State of Health Estimation in Lithium-Ion Batteries". Journal of The Electrochemical Society 170, n.º 9 (1 de septiembre de 2023): 090524. http://dx.doi.org/10.1149/1945-7111/acf0ef.
Texto completoLi, Zhenyu. "A Review of Physics-Informed Neural Networks". Applied and Computational Engineering 133, n.º 1 (24 de enero de 2025): 165–73. https://doi.org/10.54254/2755-2721/2025.20636.
Texto completoKarakonstantis, Xenofon, Diego Caviedes-Nozal, Antoine Richard y Efren Fernandez-Grande. "Room impulse response reconstruction with physics-informed deep learning". Journal of the Acoustical Society of America 155, n.º 2 (1 de febrero de 2024): 1048–59. http://dx.doi.org/10.1121/10.0024750.
Texto completoPu, Ruilong y Xinlong Feng. "Physics-Informed Neural Networks for Solving Coupled Stokes–Darcy Equation". Entropy 24, n.º 8 (11 de agosto de 2022): 1106. http://dx.doi.org/10.3390/e24081106.
Texto completoKenzhebek, Y., T. S. Imankulov y D. Zh Akhmed-Zaki. "PREDICTION OF OIL PRODUCTION USING PHYSICS-INFORMED NEURAL NETWORKS". BULLETIN Series of Physics & Mathematical Sciences 76, n.º 4 (15 de diciembre de 2021): 45–50. http://dx.doi.org/10.51889/2021-4.1728-7901.06.
Texto completoHou, Shubo, Wenchao Wu y Xiuhong Hao. "Physics-informed neural network for simulating magnetic field of permanent magnet". Journal of Physics: Conference Series 2853, n.º 1 (1 de octubre de 2024): 012018. http://dx.doi.org/10.1088/1742-6596/2853/1/012018.
Texto completoYoon, Seunghyun, Yongsung Park y Woojae Seong. "Improving mode extraction with physics-informed neural network". Journal of the Acoustical Society of America 154, n.º 4_supplement (1 de octubre de 2023): A339—A340. http://dx.doi.org/10.1121/10.0023729.
Texto completoPan, Cunliang, Shi Feng, Shengyang Tao, Hongwu Zhang, Yonggang Zheng y Hongfei Ye. "Physics-Informed Neural Network for Young-Laplace Equation". International Conference on Computational & Experimental Engineering and Sciences 30, n.º 1 (2024): 1. http://dx.doi.org/10.32604/icces.2024.011132.
Texto completoTesis sobre el tema "Physics-Informed neural network"
Mirzai, Badi. "Physics-Informed Deep Learning for System Identification of Autonomous Underwater Vehicles : A Lagrangian Neural Network Approach". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301626.
Texto completoI den här uppsatsen utforskas Lagrangianska Neurala Nätverk (LNN) för systemidentifiering av Autonoma Undervattensfordon (AUV) med 6 frihetsgrader. En av de största utmaningarna med AUV är deras begränsningar när det kommer till trådlös kommunikation och navigering under vatten. Ett krav för att ha fungerande AUV är deras förmåga att navigera och utföra uppdrag under okända undervattensförhållanden med begränsad och brusig sensordata. Dessutom är ett kritiskt krav för lokalisering och adaptiv reglerteknik att ha noggranna modeller av systemets olinjära dynamik, samtidigt som den dynamiska miljön i havet tas i beaktande. De flesta sådana modeller tar inte i beaktande sensordata för att reglera dess parameterar. Insamling av sådan data för AUVer är besvärligt, men nödvändigt för att skapa större flexibilitet hos modellens parametrar. Trots de senaste genombrotten inom djupinlärning är traditionella metoder av systemidentifiering dominanta än idag för AUV. Det är av dessa anledningar som vi i denna uppsats strävar efter en datadriven metod, där vi förankrar lagar från fysik under inlärningen av systemets state-space modell. Mer specifikt utforskar vi LNN för ett system med högre dimension. Vidare expanderar vi även LNN till att även ta ickekonservativa krafter som verkar på systemet i beaktande, såsom dämpning och styrsignaler. Nätverket tränas att lära sig från simulerad data från en andra ordningens differentialekvation som beskriver en AUV. Den tränade modellen utvärderas genom att iterativt integrera fram dess rörelse från olika initialstillstånd, vilket jämförs med den korrekta modellen. Resultaten visade en modell som till viss del var kapabel till att förutspå korrekt acceleration, med begränsad framgång i att lära sig korrekt rörelseriktning framåt i tiden.
Cedergren, Linnéa. "Physics-informed Neural Networks for Biopharma Applications". Thesis, Umeå universitet, Institutionen för fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-185423.
Texto completoElhawary, Mohamed. "Apprentissage profond informé par la physique pour les écoulements complexes". Electronic Thesis or Diss., Paris, ENSAM, 2024. http://www.theses.fr/2024ENAME068.
Texto completoThis PhD work investigates two specific problems concerning turbomachinery using machine learning algorithms. The first focuses on the axial flow compressor, addressing the issues of rotating stall and surge which is unstable phenomena that limit the operational range of compressors. Recent advancements include the development of flow control techniques, such as jets at the casing and leading edge of the rotor, which have shown promise in extending compressor operating ranges. However, optimizing these control strategies poses a challenge due to the large number of parameters and configurations, including the number of jets, the injection velocity, and the injection angle in the fixed frame. This raises the question: can ML algorithms assist in exploring this extensive parameter space and optimizing the control strategy? To this end, a comprehensive database of experimental results from various control parameters and compressor performance evaluations on an axial flow compressor has been utilized, with tests conducted on the CME2 test bench at LMFL laboratory. The second problem examines the radial vaneless diffuser, an annular stator component positioned downstream of the rotor in radial pumps and compressors. Its primary role is to decelerate the fluid while increasing static pressure and enthalpy. Despite its seemingly straightforward function, predicting the flow behaviour within the diffuser is quite challenging due to the lack of fluid guidance, the complex jet wake flow structure at the inlet, flow instabilities, three-dimensional nature of the flow. This leads to the inquiry: can ML algorithms effectively predict this flow? For this analysis, we utilize a database consisting of numerical simulations (URANS) obtained on a radial flow pump geometry performed at LMFL laboratory. We employed two machine learning approaches to investigate these distinct topics related to turbomachinery devices. The first approach utilizes Neural Networks (NNs) and Genetic Algorithms (GAs) to explore active flow control strategies in an axial compressor. The second approach applies Physics-Informed Neural Networks (PINNs) to model 2D turbulent flow in the vaneless diffuser of a radial pump
Wu, Dawen. "Solving Some Nonlinear Optimization Problems with Deep Learning". Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG083.
Texto completoThis thesis considers four types of nonlinear optimization problems, namely bimatrix games, nonlinear projection equations (NPEs), nonsmooth convex optimization problems (NCOPs), and chance-constrained games (CCGs).These four classes of nonlinear optimization problems find extensive applications in various domains such as engineering, computer science, economics, and finance.We aim to introduce deep learning-based algorithms to efficiently compute the optimal solutions for these nonlinear optimization problems.For bimatrix games, we use Convolutional Neural Networks (CNNs) to compute Nash equilibria.Specifically, we design a CNN architecture where the input is a bimatrix game and the output is the predicted Nash equilibrium for the game.We generate a set of bimatrix games by a given probability distribution and use the Lemke-Howson algorithm to find their true Nash equilibria, thereby constructing a training dataset.The proposed CNN is trained on this dataset to improve its accuracy. Upon completion of training, the CNN is capable of predicting Nash equilibria for unseen bimatrix games.Experimental results demonstrate the exceptional computational efficiency of our CNN-based approach, at the cost of sacrificing some accuracy.For NPEs, NCOPs, and CCGs, which are more complex optimization problems, they cannot be directly fed into neural networks.Therefore, we resort to advanced tools, namely neurodynamic optimization and Physics-Informed Neural Networks (PINNs), for solving these problems.Specifically, we first use a neurodynamic approach to model a nonlinear optimization problem as a system of Ordinary Differential Equations (ODEs).Then, we utilize a PINN-based model to solve the resulting ODE system, where the end state of the model represents the predicted solution to the original optimization problem.The neural network is trained toward solving the ODE system, thereby solving the original optimization problem.A key contribution of our proposed method lies in transforming a nonlinear optimization problem into a neural network training problem.As a result, we can now solve nonlinear optimization problems using only PyTorch, without relying on classical convex optimization solvers such as CVXPY, CPLEX, or Gurobi
Quattromini, Michele. "Graph Neural Networks for fluid mechanics : data-assimilation and optimization". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST161.
Texto completoThis PhD thesis investigates the application of Graph Neural Networks (GNNs) in the field of Computational Fluid Dynamics (CFD), with a focus on data-assimilation and optimization. The work is structured into three main parts: data-assimilation for Reynolds-Averaged Navier-Stokes (RANS) equations based on GNN models; data-assimilation augmented by GNN and adjoint-based enforced physical constraint; fluid systems optimization by ML techniques. In the first part, the thesis explores the potential of GNNs to bypass traditional closure models, which often require manual calibration and are prone to inaccuracies. By leveraging high-fidelity simulation data, GNNs are trained to directly learn the unresolved flow quantities, offering a more flexible framework for the RANS closure problem. This approach eliminates the need for manually tuned closure models, providing a generalized and data-driven alternative. Moreover, in this first part, a comprehensive study of the impact of data quantity on GNN performance is conducted, designing an Active Learning strategy to select the most informative data among those available. Building on these results, the second part of the thesis addresses a critical challenge often faced by ML models: the lack of guaranteed physical consistency in their predictions. To ensure that the GNNs not only minimize errors but also produce physically valid results, this part integrates physical constraints directly into the GNN training process. By embedding key fluid mechanics principles into the machine learning framework, the model produces predictions that are both reliable and consistent with the underlying physical laws, enhancing its applicability to real-world problems. In the third part, the thesis demonstrates the application of GNNs to optimize fluid dynamics systems, with a particular focus on wind turbine design. Here, GNNs are employed as surrogate models, enabling rapid predictions of various design configurations without the need for performing a full CFD simulation at each iteration. This approach significantly accelerates the design process and demonstrates the potential of ML-driven optimization in CFD workflows, allowing for more efficient exploration of design spaces and faster convergence toward optimal solutions. On the methodology side, the thesis introduces a custom GNN architecture specifically tailored for CFD applications. Unlike traditional neural networks, GNNs are inherently capable of handling unstructured mesh data, which is common in fluid mechanics problems involving irregular geometries and complex flow domains. To this end, the thesis presents a two-fold interface between Finite Element Method (FEM) solvers and the GNN architecture. This interface transforms FEM vector fields into numerical tensors that can be efficiently processed by the neural network, allowing data exchange between the simulation environment and the learning model
Doriat, Aurélien. "Caractérisation des couplages aéro-thermo-mécaniques lors d’un vieillissement par thermo-oxydation de composites à matrice polymère soumis à un écoulement rapide et chauffé". Electronic Thesis or Diss., Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2024. http://www.theses.fr/2024ESMA0018.
Texto completoCarbon fiber-reinforced polymer matrix composites (CFRP) are widely used in cold aeronautical structures. In aeronautical engine applications, such as fan blades, these materials can be subjected to particularly severe environmental conditions, with temperatures reaching up to 120 ◦C and airflow speeds close to Mach 1. It is well established that epoxy polymers are prone to thermo-oxidation phenomena when exposed to high temperatures.This phenomenon involves the diffusion and reaction of oxygen within the polymer, leading to color changes, antiplasticization of the material, and embrittlement. Until now, aging tests have been mainly conducted in static air ovens, providing a detailed understanding of the phenomenon under these conditions. However, the impact of airflow on thermo-oxidation remains to be explored.This study thus aims to deepen the understanding of the coupling between airflow and material degradation due to thermo-oxidation.Samples were aged in an oven under air at atmospheric pressure and in the BATH wind tunnel, adapted for these tests and capable of generating an airflow at over 150 ◦C and Mach 1, thereby reproducing the most severe usage conditions encountered in aircraft engines. This comparison between oven and wind tunnel tests showed an acceleration of aging in the wind tunnel. To achieve this result, an experimental technique based on the color change induced by oxidation was developed and used. This technique was validated with indentation tests. With this improved understanding of the accelerated aging, a coupled model between the airflow, oxidation chemistry, and changes in mechanical properties was established to better understand the interfacial mechanisms. This modeling comprises three steps. The pressure and temperature fields at the sample surface were calculated using Reynolds-Averaged Navier-Stokes (RANS) fluid simulations. Then, a mechanistic model was used to describe the chemical reactions during oxidation. Finally, based on thecolor measurements, a physics-informed neural network (PINN) was implemented to couple the chemical quantities to the mechanical properties
(8828960), Sukirt. "Physics Informed Neural Networks for Engineering Systems". Thesis, 2020.
Buscar texto completoYadav, Sangeeta. "Data Driven Stabilization Schemes for Singularly Perturbed Differential Equations". Thesis, 2023. https://etd.iisc.ac.in/handle/2005/6095.
Texto completo(10141679), Haoyang Zheng. "Quantifying implicit and explicit constraints on physics-informed neural processes". Thesis, 2021.
Buscar texto completoDue to strong interactions among various phases and among the phases and fluid motions, multiphase flows (MPFs) are so complex that lots of efforts have to be paid to predict its sequential patterns of phases and motions. The present paper applies the physical constraints inherent in MPFs and enforces them to a physics-informed neural network (PINN) model either explicitly or implicitly, depending on the type of constraints. To predict the unobserved order parameters (OPs) (which locate the phases) in the future steps, the conditional neural processes (CNPs) with long short-term memory (LSTM, combined as CNPLSTM) are applied to quickly infer the dynamics of the phases after encoding only a few observations. After that, the multiphase consistent and conservative boundedness mapping (MCBOM) algorithm is implemented the correction the predicted OPs from CNP-LSTM so that the mass conservation, the summation of the volume fractions of the phases being unity, the consistency of reduction, and the boundedness of the OPs are strictly satisfied. Next, the density of the fluid mixture is computed from the corrected OPs. The observed velocity and density of the fluid mixture then encode in a physics-informed conditional neural processes and long short-term memory (PICNP-LSTM) where the constraint of momentum conservation is included in the loss function. Finally, the unobserved velocity in future steps is predicted from PICNP-LSTM. The proposed physics-informed neural processes (PINPs) model (CNP-LSTM-MCBOM-PICNP-LSTM) for MPFs avoids unphysical behaviors of the OPs, accelerates the convergence, and requires fewer data. The proposed model successfully predicts several canonical MPF problems, i.e., the horizontal shear layer (HSL) and dam break (DB) problems, and its performances are validated.
Alhubail, Ali. "Application of Physics-Informed Neural Networks to Solve 2-D Single-phase Flow in Heterogeneous Porous Media". Thesis, 2021. http://hdl.handle.net/10754/670174.
Texto completoCapítulos de libros sobre el tema "Physics-Informed neural network"
Beniwal, Kirti y Vivek Kumar. "Gradient-Based Physics-Informed Neural Network". En Third Congress on Intelligent Systems, 749–61. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9379-4_54.
Texto completoMadenci, Erdogan, Pranesh Roy y Deepak Behera. "Peridynamics for Physics Informed Neural Network". En Advances in Peridynamics, 399–418. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97858-7_16.
Texto completoLi, Yao, Yuanxun Xu, Shengzhu Shi y Boying Wu. "Adversarial Adaptive Sampling for Physics-Informed Neural Network". En Lecture Notes in Networks and Systems, 431–42. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-77688-5_41.
Texto completoNaveen Raj, R. "Physics Informed Neural Network for Solution of Duffing Oscillators". En Springer Proceedings in Physics, 164–72. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-69146-1_14.
Texto completoDhamirah Mohamad, Najwa Zawani, Akram Yousif, Nasiha Athira Binti Shaari, Hasreq Iskandar Mustafa, Samsul Ariffin Abdul Karim, Afza Shafie y Muhammad Izzatullah. "Heat Transfer Modelling with Physics-Informed Neural Network (PINN)". En Studies in Systems, Decision and Control, 25–35. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04028-3_3.
Texto completoMahesh, Ragini Bal, Jorge Leandro y Qing Lin. "Physics Informed Neural Network for Spatial-Temporal Flood Forecasting". En Lecture Notes in Civil Engineering, 77–91. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5501-2_7.
Texto completoOh, Dong Keun. "Pure Physics-Informed Echo State Network of ODE Solution Replicator". En Artificial Neural Networks and Machine Learning – ICANN 2023, 225–36. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44201-8_19.
Texto completoWu, Mingyu, Yafei Wang, Yichen Zhang y Zexing Li. "Physics-Informed Neural Network for Mining Truck Suspension Parameters Identification". En Lecture Notes in Mechanical Engineering, 665–71. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-70392-8_94.
Texto completoIbrahim, Abdul Qadir, Sebastian Götschel y Daniel Ruprecht. "Parareal with a Physics-Informed Neural Network as Coarse Propagator". En Euro-Par 2023: Parallel Processing, 649–63. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-39698-4_44.
Texto completoFallah, Ali y Mohammad Mohammadi Aghdam. "Physics-Informed Neural Network for Solution of Nonlinear Differential Equations". En Nonlinear Approaches in Engineering Application, 163–78. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53582-6_5.
Texto completoActas de conferencias sobre el tema "Physics-Informed neural network"
Miao, Yuyang, Haolin Li y Danilo Mandic. "GPINN: Physics-Informed Neural Network with Graph Embedding". En 2024 International Joint Conference on Neural Networks (IJCNN), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10651053.
Texto completoJahanbakhsh, Amirmohammad, Rojan Firouznia, Sina Nazifi y Hadi Ghasemi. "Physics-Informed Neural Network on Thin Film Evaporation". En 2024 23rd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 1–10. IEEE, 2024. http://dx.doi.org/10.1109/itherm55375.2024.10709585.
Texto completoBakirtzis, Stefanos, Marco Fiore y Ian Wassell. "Towards Physics-Informed Graph Neural Network-based Computational Electromagnetics". En 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI), 673–74. IEEE, 2024. http://dx.doi.org/10.1109/ap-s/inc-usnc-ursi52054.2024.10686000.
Texto completoGlosemeyer, Tom, Julian Lich, Robert Kuschmierz y Juergen Czarske. "3D Diffuser Encoded Imaging and Physics-Informed Neural Network Reconstruction". En Frontiers in Optics, FW6D.1. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.fw6d.1.
Texto completoSerrano, Gil, Marcelo Jacinto, José Ribeiro-Gomes, João Pinto, Bruno J. Guerreiro, Alexandre Bernardino y Rita Cunha. "Physics-Informed Neural Network for Multirotor Slung Load Systems Modeling". En 2024 IEEE International Conference on Robotics and Automation (ICRA), 12592–98. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10610582.
Texto completoZhao, Michael Yong, Olzhas Mukhmetov, Aigerim Mashekova, Eddie Yin Kwee Ng, Nurduman Aidossov, Vasilios Zarikas y Anna Midlenko. "Application of Physics Informed Neural Network for Breast Cancer Detection". En 2024 9th International Conference on Automation, Control and Robotics Engineering (CACRE), 204–8. IEEE, 2024. http://dx.doi.org/10.1109/cacre62362.2024.10635033.
Texto completoEeckhout, Victor, Hossein Fani, Md Umar Hashmi y Geert Deconinck. "Improved Physics-Informed Neural Network based AC Power Flow for Distribution Networks". En 2024 IEEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE), 1–6. IEEE, 2024. https://doi.org/10.1109/isgteurope62998.2024.10863674.
Texto completoChen, Likun, Xuzhu Dong, Yifan Wang, Wei Sun, Bo Wang y Gareth Harrison. "Physics-Informed Neural Network for Microgrid Forward/Inverse Ordinary Differential Equations". En 2024 IEEE Power & Energy Society General Meeting (PESGM), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/pesgm51994.2024.10688678.
Texto completoZhang, Qian, Yuan Sui, Stefan Rothe y Jürgen W. Czarske. "Learning to decompose multimode fibers using a physics-informed neural network". En Emerging Topics in Artificial Intelligence (ETAI) 2024, editado por Giovanni Volpe, Joana B. Pereira, Daniel Brunner y Aydogan Ozcan, 50. SPIE, 2024. http://dx.doi.org/10.1117/12.3027588.
Texto completoLuan, Xinmeng, Marco Olivieri, Mirco Pezzoli, Fabio Antonacci y Augusto Sarti. "Complex - Valued Physics-Informed Neural Network for Near-Field Acoustic Holography". En 2024 32nd European Signal Processing Conference (EUSIPCO), 126–30. IEEE, 2024. http://dx.doi.org/10.23919/eusipco63174.2024.10715295.
Texto completoInformes sobre el tema "Physics-Informed neural network"
Ellis, Kai, Nilanjan Banerjee y Christopher Pierce. Modeling a Thermionic Electron Source Using a Physics-Informed Neural Network. Office of Scientific and Technical Information (OSTI), octubre de 2023. http://dx.doi.org/10.2172/2008057.
Texto completoPettit, Chris y D. Wilson. A physics-informed neural network for sound propagation in the atmospheric boundary layer. Engineer Research and Development Center (U.S.), junio de 2021. http://dx.doi.org/10.21079/11681/41034.
Texto completoWells, Daniel, Benjamin Baker y Kristine Pankow. The Feasibility of Incorporating a 3D Velocity Model Into Earthquake Location Around Salt Lake City, UT Using a Physics Informed Neural Network. Office of Scientific and Technical Information (OSTI), agosto de 2023. http://dx.doi.org/10.2172/2430497.
Texto completoNadiga, Balasubramanya y Robert Lowrie. Physics Informed Neural Networks as Computational Physics Emulators. Office of Scientific and Technical Information (OSTI), junio de 2023. http://dx.doi.org/10.2172/1985825.
Texto completoGuan, Jiajing, Sophia Bragdon y Jay Clausen. Predicting soil moisture content using Physics-Informed Neural Networks (PINNs). Engineer Research and Development Center (U.S.), agosto de 2024. http://dx.doi.org/10.21079/11681/48794.
Texto completoD'Elia, Marta, Michael L. Parks, Guofei Pang y George Karniadakis. nPINNs: nonlocal Physics-Informed Neural Networks for a parametrized nonlocal universal Laplacian operator. Algorithms and Applications. Office of Scientific and Technical Information (OSTI), abril de 2020. http://dx.doi.org/10.2172/1614899.
Texto completoBailey Bond, Robert, Pu Ren, James Fong, Hao Sun y Jerome F. Hajjar. Physics-informed Machine Learning Framework for Seismic Fragility Analysis of Steel Structures. Northeastern University, agosto de 2024. http://dx.doi.org/10.17760/d20680141.
Texto completoSECOND-ORDER ANALYSIS OF BEAM-COLUMNS BY MACHINE LEARNING-BASED STRUCTURAL ANALYSIS THROUGH PHYSICS-INFORMED NEURAL NETWORKS. The Hong Kong Institute of Steel Construction, diciembre de 2023. http://dx.doi.org/10.18057/ijasc.2023.19.4.10.
Texto completo