Literatura académica sobre el tema "Physcomitrella paten"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Physcomitrella paten".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Physcomitrella paten"
Zhou, Xun, Guan Nan Guo, Le Qi Wang, Su Lan Bai, Chun Li Li, Rong Yu y Yan Hong Li. "Paenibacillus physcomitrellae sp. nov., isolated from the moss Physcomitrella patens". International Journal of Systematic and Evolutionary Microbiology 65, Pt_10 (1 de octubre de 2015): 3400–3406. http://dx.doi.org/10.1099/ijsem.0.000428.
Texto completoReski, Ralf y David J. Cove. "Physcomitrella patens". Current Biology 14, n.º 7 (abril de 2004): R261—R262. http://dx.doi.org/10.1016/j.cub.2004.03.016.
Texto completoGorina, S. S. y Y. Y. Toporkova. "OXYLIPINS. DYNAMICS GENE EXPRESSION OF THE LIPOXYGENASE CASCADE OF MOSS PHYSCOMITRELLA PATENS DURING INFECTION". ÈKOBIOTEH 3, n.º 2 (2020): 157–65. http://dx.doi.org/10.31163/2618-964x-2020-3-2-157-165.
Texto completoCove, David. "The Moss, Physcomitrella patens". Journal of Plant Growth Regulation 19, n.º 3 (1 de septiembre de 2000): 275–83. http://dx.doi.org/10.1007/s003440000031.
Texto completoSha, Wei, Li Wu y Xiao Hong Song. "In Silicon Cloning and Bioinformatics Analysis of an Eukaryotic Initiation Factor 4E Gene from Grimmia pilifera". Applied Mechanics and Materials 138-139 (noviembre de 2011): 1132–38. http://dx.doi.org/10.4028/www.scientific.net/amm.138-139.1132.
Texto completoSchaefer, D. "Gene targeting in Physcomitrella patens". Current Opinion in Plant Biology 4, n.º 2 (1 de abril de 2001): 143–50. http://dx.doi.org/10.1016/s1369-5266(00)00150-3.
Texto completoCove, D. J., P. F. Perroud, A. J. Charron, S. F. McDaniel, A. Khandelwal y R. S. Quatrano. "Culturing the Moss Physcomitrella patens". Cold Spring Harbor Protocols 2009, n.º 2 (1 de febrero de 2009): pdb.prot5136. http://dx.doi.org/10.1101/pdb.prot5136.
Texto completoBricker, Terry M., Adam J. Bell, Lan Tran, Laurie K. Frankel y Steven M. Theg. "Photoheterotrophic growth of Physcomitrella patens". Planta 239, n.º 3 (27 de noviembre de 2013): 605–13. http://dx.doi.org/10.1007/s00425-013-2000-3.
Texto completoSarnighausen, Eric, Virginie Wurtz, Dimitri Heintz, Alain Van Dorsselaer y Ralf Reski. "Mapping of the Physcomitrella patens proteome". Phytochemistry 65, n.º 11 (junio de 2004): 1589–607. http://dx.doi.org/10.1016/j.phytochem.2004.04.028.
Texto completoArazi, Tzahi. "MicroRNAs in the moss Physcomitrella patens". Plant Molecular Biology 80, n.º 1 (4 de marzo de 2011): 55–65. http://dx.doi.org/10.1007/s11103-011-9761-5.
Texto completoTesis sobre el tema "Physcomitrella paten"
Mittmann, Franz. "Molekularbiologische Untersuchungen zum Phytochromsystem der Moose Physcomitrella patens und Ceratodon purpureus". [S.l.] : [s.n.], 2002. http://www.diss.fu-berlin.de/2003/94/index.html.
Texto completoCast, Delphine. "Régulation de la croissance : Implication des protéines ribosomales S6Kinases chez la mousse Physcomitrella patens". Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4095.
Texto completoPlants have developed a strong capacity to adapt to environmental cues like nutritive conditions. However, the signalling pathways involved in the perception of environmental signals and their integration into plant development are still poorly understood. The TOR-S6kinase signalling pathway is conserved in all eukaryotes but has been mainly studied in yeast and animals where it is known to regulate growth in response to the environment via translation, ribosome synthesis and the cell cycle. In the angiosperm Arabidopsis thaliana, two genes encode S6 kinases but their functions during development are not known.The objective of this work was to characterise the function of S6 kinases in plants using the moss Physcomitrella patens as a model system. We have developed new methods to study the development of moss protonema, a filamentous tissue made of only two cell types: chloronema and caulonema. For example, we have characterized a molecular marker of caulonema, the cell type induced by starvation. We have characterized the three genes encoding P. patens S6 kinases and used gene targeting to generate knock-out mutants for each of them. Our results indicate that PpS6K1 regulates protonema development in response to nutrient conditions, mainly through the rate of chloronema cells proliferation. In the other hand, PpS6K2 is involved in the inhibition of the chloronema to caulonema transition and in nutrient sensing. PpS6K3 seems to be involved in the development of the gametophore and the sporophyte. Thus, our results show that the three S6Ks are involved at different levels in the regulation of growth and development in the moss P patens
Russell, Angela Julia. "Morphogenesis in the moss Physcomitrella patens". Thesis, University of Leeds, 1993. http://etheses.whiterose.ac.uk/1535/.
Texto completoKnight, C. D. "Gravitropism in the moss Physcomitrella patens". Thesis, University of Leeds, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383268.
Texto completoLee, Kieran J. D. "The cell wall of Physcomitrella patens". Thesis, University of Leeds, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.405745.
Texto completoLiénard, David. "Aquaporines et évaporation chez Physcomitrella patens". Rouen, 2006. http://www.theses.fr/2006ROUES004.
Texto completoPoikilohydric plants such as the moss P. Patens, which do not control their water loss, cannot regulate their water potential. We focused our work on the identification of aquaporins involved during evaporation from the pseudo gametophytic leaves of P. Patens. Four aquaporins Pip1;1, Pip2;1, Pip2;2 and Pip2;3, were cloned and knock-out mutations were obtained for three of them (Pip2;1, Pip2;2 et Pip2;3). Protoplasts from the corresponding mutant plants pip21 and pip22, exhibited a strong decrease in their water permeability, while the pip23 protoplast permeabilities remained unaffected. No difference was visible between the wild type and mutants, when plants were grown under a saturated atmosphere. On the opposite, pip21 and pip22 were less resistant than wild type to a water stress. We proposed a model to explain the role of these aquaporins during evaporation. Our measurements also suggest that interactions enhancing their permeabilities should exist between pip21 and pip22
Faltusz, Alexander. "Molekulare und funktionelle Analyse von P-Typ-Kalzium-ATPasen im Laubmoos Physcomitrella patens (Hedw.) B.S.G". [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=971028567.
Texto completoHenschel, Katrin Andrea. "Strukturelle und funktionelle Charakterisierung von MADS-Box-Genen aus dem Laubmoos Physcomitrella patens (Hedw.) B.S.G". [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=965796779.
Texto completoWanke, Dierk. "Studien zur pflanzenspezifischen WRKY-Transkriptionsfaktorfamilie vergleichende Analyse zwischen dem Moos, Physcomitrella patens, und höheren Pflanzen sowie eine gesamtgenomische Betrachtung von WRKY-DNA-Bindungsstellen /". [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=971303991.
Texto completoRing, Andreas. "Serine/Arginine-rich proteins in Physcomitrella patens". Thesis, Linköpings universitet, Molekylär genetik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-80870.
Texto completoLibros sobre el tema "Physcomitrella paten"
Celia, Knight, Perroud Pierre-François y Cove D. J, eds. The moss Physcomitrella patens. Ames, Iowa: Wiley-Blackwell, 2009.
Buscar texto completoBusch, Hauke. Network theory inspired analysis of time-resolved expression data reveals key players guiding P. patens stem cell development. Freiburg: Universität, 2013.
Buscar texto completoCove, David, Celia Knight, Pierre-François Perroud y Pierre-François Perroud. Annual Plant Reviews, the Moss Physcomitrella Patens. Wiley & Sons, Limited, John, 2009.
Buscar texto completoCove, David, Celia Knight y Pierre-François Perroud. Annual Plant Reviews, the Moss Physcomitrella Patens. Wiley & Sons, Incorporated, John, 2009.
Buscar texto completoBhardwaj, Swati. Cytosine DNA Methyltransferases in the Moss, Physcomitrella patens. LAP Lambert Academic Publishing, 2013.
Buscar texto completoReutter, Kirsten. Expression heterologer Gene in Physcomitrella patens (Hedw.) B.S.G. 1994.
Buscar texto completoHamburg, Universität, ed. Zell- und molekularbiologische Untersuchungen der Cytokinin-induzierbaren Gewebedifferenzierung und Chloroplastenteilung bei Physcomitrella patens (Hedw.) B.S.G. 1990.
Buscar texto completoCapítulos de libros sobre el tema "Physcomitrella paten"
Arif, Muhammad Asif, Isam Fattash, Basel Khraiwesh y Wolfgang Frank. "Physcomitrella patens Small RNA Pathways". En Non Coding RNAs in Plants, 139–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19454-2_10.
Texto completoSugita, Mamoru. "Plastid Transformation in Physcomitrella patens". En Methods in Molecular Biology, 427–37. Totowa, NJ: Humana Press, 2014. http://dx.doi.org/10.1007/978-1-62703-995-6_29.
Texto completoResemann, Hanno. "Lipid Composition of Physcomitrella patens". En Encyclopedia of Lipidomics, 1–6. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-007-7864-1_125-1.
Texto completoFattash, Isam, Basel Khraiwesh, M. Asif Arif y Wolfgang Frank. "Expression of Artificial MicroRNAs in Physcomitrella patens". En Methods in Molecular Biology, 293–315. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-558-9_25.
Texto completoYamada, Moé, Tomohiro Miki y Gohta Goshima. "Imaging Mitosis in the Moss Physcomitrella patens". En Methods in Molecular Biology, 263–82. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3542-0_17.
Texto completoSchaefer, D. G., G. Bisztray y J. P. Zrÿd. "Genetic Transformation of the Moss Physcomitrella patens". En Plant Protoplasts and Genetic Engineering V, 349–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-09366-5_24.
Texto completoErmert, Anna Lena, Fabien Nogué, Fabian Stahl, Tanja Gans y Jon Hughes. "CRISPR/Cas9-Mediated Knockout of Physcomitrella patens Phytochromes". En Methods in Molecular Biology, 237–63. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9612-4_20.
Texto completoBonhomme, Sandrine, Fabien Nogué, Catherine Rameau y Didier G. Schaefer. "Usefulness of Physcomitrella patens for Studying Plant Organogenesis". En Methods in Molecular Biology, 21–43. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-221-6_2.
Texto completoSugita, Mamoru. "Plastid Transformation in Physcomitrium (Physcomitrella) patens: An Update". En Methods in Molecular Biology, 321–31. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1472-3_19.
Texto completoBressendorff, Simon, Magnus Wohlfahrt Rasmussen, Morten Petersen y John Mundy. "Chitin-Induced Responses in the Moss Physcomitrella patens". En Methods in Molecular Biology, 317–24. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6859-6_27.
Texto completoActas de conferencias sobre el tema "Physcomitrella paten"
Wenqun Fu, Zhengbin Chen, Ying Lin, Yuling Wang, Li Li, Xiaoling Teng, Jinmei Fu y Xiaoqing Li. "Functional analysis of histone deacetylase RPD3/HDA1 family in Physcomitrella patens by bioinformatics". En 2011 International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE). IEEE, 2011. http://dx.doi.org/10.1109/rsete.2011.5965941.
Texto completoQuan, Xiangyu, Osamu Matoba, Kouichi Nitta, Tamada Yousuke y Yasuhiro Awatsuji. "Live cell imaging of Physcomitrella patens using a multi-modal digital holographic microscope". En 2016 15th Workshop on Information Optics (WIO). IEEE, 2016. http://dx.doi.org/10.1109/wio.2016.7745594.
Texto completoDeluca, Claudia. "Shedding light on the role of a heat stress-inducible eIF5A from Physcomitrella patens". En ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1053076.
Texto completoRadin, Ivan. "Moss (Physcomitrella patens) Piezo mechasensitive ion channel homologs positively regulate cell growth and vacuolar morphology". En ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1372312.
Texto completoRuibal, Cecilia. "Physcomitrella patens dehydrin, PpDHNA, acts like “chaperone” by conffering protection against stress effects through protein stability enhancement". En ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1052954.
Texto completoCastro, Alexandra. "Geme-wide identification, characterization and expression analysis of the Bcl-2 associated athagene (BAG) gene family in Physcomitrella patens". En ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1052969.
Texto completoZvonarev, S. N., V. S. Matskevich, K. Angelis y V. V. Demidchik. "Qualitative composition of reactive oxygen species generated by salinization and assessment of the effect of elevated NaCl levels on DNA stability in Physcomitrella patens cells". En IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-178.
Texto completoInformes sobre el tema "Physcomitrella paten"
Christopher, David A. y Avihai Danon. Plant Adaptation to Light Stress: Genetic Regulatory Mechanisms. United States Department of Agriculture, mayo de 2004. http://dx.doi.org/10.32747/2004.7586534.bard.
Texto completo