Libros sobre el tema "Photonic band"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Photonic band.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 32 mejores mejores libros para su investigación sobre el tema "Photonic band".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore libros sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Soukoulis, Costas M., ed. Photonic Band Gap Materials. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1665-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Soukoulis, C. M. Photonic Band Gap Materials. Dordrecht: Springer Netherlands, 1996.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

M, Soukoulis C., North Atlantic Treaty Organization. Scientific Affairs Division. y NATO Advanced Study Institute on Photonic Band Gap Materials (1995 : Eloúnda, Greece), eds. Photonic band gap materials. Dordrecht: Kluwer Academic Publishers, 1996.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Soukoulis, C. M., ed. Photonic Band Gaps and Localization. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1606-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

M, Soukoulis C., North Atlantic Treaty Organization. Scientific Affairs Division. y NATO Advanced Research Workshop on Localization and Propagation of Classical Waves in Random and Periodic Structures (1992 : Hagia Pelagia, Greece), eds. Photonic band gaps and localization. New York: Plenum Press, 1993.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

NATO Advanced Research Workshop on Localization and Propagation of Classical Wavesin Random and Periodic Structures (1992 Aghia Pelaghia, Greece). Photonic band gaps and localization. New York: Plenum Press, 1993.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Phoenix, Ben. Reduced size photonic band gap (PBG) resonators. Birmingham: University of Birmingham, 2003.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Liu, Dahe. Achieving complete band gaps using low refractive index material. New York: Novinka/Nova Science Publishers, 2010.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Dolgos, Denis. Full-band Monte Carlo simulation of single photon avalanche diodes. Konstanz: Hartung-Gorre Verlag, 2012.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Hirakawa, Shinji. Passive determination of temperature and range using spectral band measurements of photon emittance. Monterey, Calif: Naval Postgraduate School, 1991.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Soukoulis, C. M. Photonic Band Gap Materials. Springer, 1996.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Soukoulis, C. M. Photonic Band Gap Materials. Ingramcontent, 2013.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Soukoulis, C. M. Photonic Band Gaps and Localization. Springer London, Limited, 2013.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Soukoulis, C. M. Photonic Band Gaps and Localization. Springer, 2014.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Swarup, Puneet. Band structure of a photonic crystal. 2000.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Laine, Venla E. Photonic Crystals: Fabrication, Band Structure and Applications. Nova Science Publishers, Incorporated, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Aközbek, Neşet. Optical solitary waves in a photonic band gap material. 1998.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Vats, Nipun. Non-markovian radiative phenomena in photonic band-gap materials. 2001.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Antenna Gain Enhancement Using a Photonic Band Gap Reflector. Storming Media, 1999.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

John, Sajeev. Localization of Light and the Photonic Band Gap Concept. Springer, 2005.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Carpenter, Amelia K. A study of silicon nitride triangular photonic lattices near the frequency range of the photonic band gap. 2002.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

National Aeronautics and Space Administration (NASA) Staff. Femtosecond Pulse Characterization As Applied to One-Dimensional Photonic Band Edge Structures. Independently Published, 2018.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Lee, Yee Loong Richard. Design and modelling of photonic band-gap response from doubly periodic arrays. 1999.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Investigations of the Nonlinear Optical Response of Composite and Photonic Band Gap Materials. Storming Media, 1998.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Basu, Prasanta Kumar, Bratati Mukhopadhyay y Rikmantra Basu. Semiconductor Nanophotonics. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780198784692.001.0001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Abstract Nanometre sized structures made of semiconductors, insulators and metals and grown by modern growth technologies or by chemical synthesis exhibit novel electronic and optical phenomena due to confinement of electrons and photons. Strong interactions between electrons and photons in narrow regions lead to inhibited spontaneous emission, thresholdless laser operation, and Bose Einstein condensation of exciton-polaritons in microcavities. Generation of sub-wavelength radiation by surface Plasmon-polaritons at metal-semiconductor interfaces, creation of photonic band gap in dielectrics, and realization of nanometer sized semiconductor or insulator structures with negative permittivity and permeability, known as metamaterials, are further examples in the area of nanophotonics. The studies help develop Spasers and plasmonic nanolasers of subwavelength dimensions, paving the way to use plasmonics in future data centres and high speed computers working at THz bandwidth with less than a few fJ/bit dissipation. The present book intends to serveas a textbook for graduate students and researchers intending to have introductory ideas of semiconductor nanophotonics. It gives an introduction to electron-photon interactions in quantum wells, wires and dots and then discusses the processes in microcavities, photonic band gaps and metamaterials and related applications. The phenomena and device applications under strong light-matter interactions are discussed by mostly using classical and semi-classical theories. Numerous examples and problems accompany each chapter.
26

Florescu, Marian. Resonant atomic switching near a photonic band-gap: towards an all-optical micro-transistor. 2003.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Woldeyohannes, Mesfin Arega. Quantum electrodynamics of a driven three-level atom near the edge of a photonic band gap. 2001.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Vurgaftman, Igor, Matthew P. Lumb y Jerry R. Meyer. Bands and Photons in III-V Semiconductor Quantum Structures. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198767275.001.0001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Semiconductor quantum structures are at the core of many photonic devices such as lasers, photodetectors, solar cells etc. To appreciate why they are such a good fit to these devices, we must understand the basic features of their band structure and how they interact with incident light. This book takes the reader from the very basics of III-V semiconductors (some preparation in quantum mechanics and electromagnetism is helpful) and shows how seemingly obscure results such as detailed forms of the Hamiltonian, optical transition strengths, and recombination mechanisms follow. The reader does not need to consult other references to fully understand the material, although a few handpicked sources are listed for those who would like to deepen their knowledge further. Connections to the properties of novel materials such as graphene and transition metal dichalcogenides are pointed out, to help prepare the reader for contributing at the forefront of research. The book also supplies a complete, up-to-date database of the band parameters that enter into the calculations, along with tables of optical constants and interpolation schemes for alloys. From these foundations, the book goes on to derive the characteristics of photonic semiconductor devices (with a focus on the mid-infrared) using the same principles of building all concepts from the ground up, explaining all derivations in detail, giving quantitative examples, and laying out dimensional arguments whenever they can help the reader’s understanding. A substantial fraction of the material in this book has not appeared in print anywhere else, including journal publications.
29

Launay, Jean-Pierre y Michel Verdaguer. Electrons in Molecules. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814597.001.0001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
The book treats in a unified way electronic properties of molecules (magnetic, electrical, photophysical), culminating with the mastering of electrons, i.e. molecular electronics and spintronics and molecular machines. Chapter 1 recalls basic concepts. Chapter 2 describes the magnetic properties due to localized electrons. This includes phenomena such as spin cross-over, exchange interaction from dihydrogen to extended molecular magnetic systems, and magnetic anisotropy with single-molecule magnets. Chapter 3 is devoted to the electrical properties due to moving electrons. One considers first electron transfer in discrete molecular systems, in particular in mixed valence compounds. Then, extended molecular solids, in particular molecular conductors, are described by band theory. Special attention is paid to structural distortions (Peierls instability) and interelectronic repulsions in narrow-band systems. Chapter 4 treats photophysical properties, mainly electron transfer in the excited state and its applications to photodiodes, organic light emitting diodes, photovoltaic cells and water photolysis. Energy transfer is also treated. Photomagnetism (how a photonic excitation modifies magnetic properties) is introduced. Finally, Chapter 5 combines the previous knowledge for three advanced subjects: first molecular electronics in its hybrid form (molecules connected to electrodes acting as wires, diodes, memory elements, field-effect transistors) or in the quantum computation approach. Then, molecular spintronics, using, besides the charge, the spin of the electron. Finally the theme of molecular machines is presented, with the problem of the directionality control of their motion.
30

Vurgaftman, Igor, Matthew P. Lumb y Jerry R. Meyer. Bands and Photons in III-V Semiconductor Quantum Structures. Oxford University Press, 2020.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Towe, E. y D. Pal. Intersublevel quantum-dot infrared photodetectors. Editado por A. V. Narlikar y Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
This article describes the basic principles of semiconductor quantum-dot infrared photodetectors based on conduction-band intersublevel transitions. Sufficient background material is discussed to enable an appreciation of the subtle differences between quantum-well and quantum-dot devices. The article first considers infrared photon absorption and photon detection, along with some metrics for photon detectors and the detection of infrared radiation by semiconductors. It then examines the optical matrix element for interband, intersubband and intersublevel transitions before turning to experimental single-pixel quantum-dot infrared photodetectors. In particular, it explains the epitaxial synthesis of quantum dots and looks at mid-wave and long-wave quantum-dot infrared photodetectors. It also evaluates the characteristics of quantum-dot detectors and possible development of quantum-dot focal plane array imagers. The article concludes with an assessment of the challenges and prospects for high-performance detectors and arrays.
32

Metzger, Lenard. Common Sense Cosmology. Lulu Press, Inc., 2010.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Pasar a la bibliografía