Artículos de revistas sobre el tema "Photon annihilation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Photon annihilation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Gajos, Aleksander. "Sensitivity of Discrete Symmetry Tests in the Positronium System with the J-PET Detector". Symmetry 12, n.º 8 (1 de agosto de 2020): 1268. http://dx.doi.org/10.3390/sym12081268.
Texto completoFanchiotti, H., C. A. García Canal y V. Vento. "Multiphoton annihilation of monopolium". International Journal of Modern Physics A 32, n.º 35 (20 de diciembre de 2017): 1750202. http://dx.doi.org/10.1142/s0217751x17502025.
Texto completoGertsen, Anders S., Mads Koerstz y Kurt V. Mikkelsen. "Benchmarking triplet–triplet annihilation photon upconversion schemes". Physical Chemistry Chemical Physics 20, n.º 17 (2018): 12182–92. http://dx.doi.org/10.1039/c8cp00588e.
Texto completoLingenfelter, Richard E. y Reuven Ramaty. "Annihilation Radiation and Gamma-Ray Continuum from the Galactic Center Region". Symposium - International Astronomical Union 136 (1989): 587–605. http://dx.doi.org/10.1017/s0074180900187091.
Texto completoBRODSKY, STANLEY J. "HIGH ENERGY PHOTON–PHOTON COLLISIONS AT A LINEAR COLLIDER". International Journal of Modern Physics A 20, n.º 31 (20 de diciembre de 2005): 7306–32. http://dx.doi.org/10.1142/s0217751x05031137.
Texto completoMohammed Ahmed, Elaf, Hadi J. M. Al-Agealy y Nada Farhan Kadhim. "Theoretical Calculation of Photon Emission from Quark-Antiquark Annihilation Using QCD Theory". Ibn AL-Haitham Journal For Pure and Applied Sciences 35, n.º 4 (20 de octubre de 2022): 37–44. http://dx.doi.org/10.30526/35.4.2879.
Texto completoChiba, M., J. Nakagawa, H. Tsugawa, R. Ogata y T. Nishimura. "A detector with high detection efficiency in 4- and 5-photon-positronium annihilations". Canadian Journal of Physics 80, n.º 11 (1 de noviembre de 2002): 1287–95. http://dx.doi.org/10.1139/p02-107.
Texto completoAKSENOV, A. G., R. RUFFINI, I. A. SIUTSOU y G. V. VERESHCHAGIN. "DYNAMICS AND EMISSION OF MILDLY RELATIVISTIC PLASMA". International Journal of Modern Physics: Conference Series 12 (enero de 2012): 1–9. http://dx.doi.org/10.1142/s2010194512006204.
Texto completoAhmed, Elaf Mohammed, Hadi J. M. Al-Agealy y Nada Farhan Kadhim. "Theoretical Study of Photons Spectra around High Energy of Quark-antiquark Using QCD Theory". NeuroQuantology 20, n.º 4 (6 de abril de 2022): 58–63. http://dx.doi.org/10.14704/nq.2022.20.4.nq22095.
Texto completoYe, Chen, Victor Gray, Khushbu Kushwaha, Sandeep Kumar Singh, Paul Erhart y Karl Börjesson. "Optimizing photon upconversion by decoupling excimer formation and triplet triplet annihilation". Physical Chemistry Chemical Physics 22, n.º 3 (2020): 1715–20. http://dx.doi.org/10.1039/c9cp06561j.
Texto completoStrizhak, A., D. Abdurashitov, A. Baranov, D. Borisenko, F. Guber, A. Ivashkin, S. Morozov, S. Musin y V. Volkov. "Setup to study the Compton scattering of entangled annihilation photons". Journal of Physics: Conference Series 2374, n.º 1 (1 de noviembre de 2022): 012041. http://dx.doi.org/10.1088/1742-6596/2374/1/012041.
Texto completoAlbicocco, P., R. Assiro, F. Bossi, P. Branchini, B. Buonomo, V. Capirossi, E. Capitolo et al. "Commissioning of the PADME experiment with a positron beam". Journal of Instrumentation 17, n.º 08 (1 de agosto de 2022): P08032. http://dx.doi.org/10.1088/1748-0221/17/08/p08032.
Texto completoRonchi, Alessandra y Angelo Monguzzi. "Sensitized triplet–triplet annihilation based photon upconversion in full organic and hybrid multicomponent systems". Chemical Physics Reviews 3, n.º 4 (diciembre de 2022): 041301. http://dx.doi.org/10.1063/5.0112032.
Texto completoDurandin, Nikita A., Jussi Isokuortti, Alexander Efimov, Elina Vuorimaa-Laukkanen, Nikolai V. Tkachenko y Timo Laaksonen. "Efficient photon upconversion at remarkably low annihilator concentrations in a liquid polymer matrix: when less is more". Chemical Communications 54, n.º 99 (2018): 14029–32. http://dx.doi.org/10.1039/c8cc07592a.
Texto completoLadinsky, Glenn A. "Three-jet process in virtual photon-photon annihilation". Physical Review D 39, n.º 9 (1 de mayo de 1989): 2515–26. http://dx.doi.org/10.1103/physrevd.39.2515.
Texto completoGeorgiev, A., M. Misheva, P. Mishev, G. Toumbev y N. Vinarov. "Spectrometer for the study of three-photon annihilation of three-photon annihilation of positrons". Crystal Research and Technology 23, n.º 3 (marzo de 1988): 451–54. http://dx.doi.org/10.1002/crat.2170230332.
Texto completoCzerwiński, Eryk, Catalina Curceanu, Kamil Dulski, Aleksander Gajos, Marek Gorgol, Andrzej Heczko, Beatrix C. Hiesmayr et al. "Studies of discrete symmetries in decays of positronium atoms". EPJ Web of Conferences 181 (2018): 01019. http://dx.doi.org/10.1051/epjconf/201818101019.
Texto completoAhmed, Elaf Mohammed, Hadi J. M. Al-Agealy y Nada Farhan Kadhim. "Study of Photons Emission Rate of Quark-Antiquark at Higher Energy". Al-Mustansiriyah Journal of Science 33, n.º 4 (30 de diciembre de 2022): 146–52. http://dx.doi.org/10.23851/mjs.v33i4.1193.
Texto completoBrodsky, Stanley J. "Physics Opportunities at a Photon–Photon Collider". International Journal of Modern Physics A 18, n.º 16 (30 de junio de 2003): 2871–92. http://dx.doi.org/10.1142/s0217751x03016343.
Texto completoYe, Changqing, Liwei Zhou, Xiaomei Wang y Zuoqin Liang. "Correction: Photon upconversion: from two-photon absorption (TPA) to triplet–triplet annihilation (TTA)". Physical Chemistry Chemical Physics 18, n.º 10 (2016): 7537. http://dx.doi.org/10.1039/c6cp90051h.
Texto completoKalashnikov, N. P., E. A. Mazur y A. S. Olczak. "Annihilation of relativistic positrons in single crystal with production of one photon". International Journal of Modern Physics A 30, n.º 22 (5 de agosto de 2015): 1550137. http://dx.doi.org/10.1142/s0217751x15501377.
Texto completoSingh, S. Somorendro y Yogesh Kumar. "Photon production in high energy nuclear collision of quark–gluon plasma". International Journal of Modern Physics A 29, n.º 22 (29 de agosto de 2014): 1450110. http://dx.doi.org/10.1142/s0217751x14501103.
Texto completoMassaro, D., C. Arina, J. Heisig, F. Maltoni y O. Mattelaer. "Studying dark matter with MadDM: lines and loops". Journal of Physics: Conference Series 2156, n.º 1 (1 de diciembre de 2021): 012073. http://dx.doi.org/10.1088/1742-6596/2156/1/012073.
Texto completoChung, Won Sang. "On the deformed photon-added and photon-subtracted states". Modern Physics Letters A 29, n.º 32 (20 de octubre de 2014): 1450174. http://dx.doi.org/10.1142/s0217732314501740.
Texto completoFernandez, E., W. T. Ford, N. Qi, A. L. Read, J. G. Smith, T. Camporesi, R. De Sangro et al. "Direct Photon Production ine+e−Annihilation". Physical Review Letters 54, n.º 2 (14 de enero de 1985): 95–98. http://dx.doi.org/10.1103/physrevlett.54.95.
Texto completoMehta, C. L., Anil K. Roy y G. M. Saxena. "Eigenstates of two-photon annihilation operators". Physical Review A 46, n.º 3 (1 de agosto de 1992): 1565–72. http://dx.doi.org/10.1103/physreva.46.1565.
Texto completoGray, Victor, Ambra Dreos, Paul Erhart, Bo Albinsson, Kasper Moth-Poulsen y Maria Abrahamsson. "Loss channels in triplet–triplet annihilation photon upconversion: importance of annihilator singlet and triplet surface shapes". Physical Chemistry Chemical Physics 19, n.º 17 (2017): 10931–39. http://dx.doi.org/10.1039/c7cp01368j.
Texto completoBeery, Drake, Ashley Arcidiacono, Jonathan P. Wheeler, Jiaqi Chen y Kenneth Hanson. "Harnessing near-infrared light via S0 to T1 sensitizer excitation in a molecular photon upconversion solar cell". Journal of Materials Chemistry C 10, n.º 12 (2022): 4947–54. http://dx.doi.org/10.1039/d1tc05270e.
Texto completoRunburg, Jack, Eric J. Baxter y Jason Kumar. "Constraining dark matter microphysics with the annihilation signal from subhalos". Journal of Cosmology and Astroparticle Physics 2022, n.º 06 (1 de junio de 2022): 023. http://dx.doi.org/10.1088/1475-7516/2022/06/023.
Texto completoRonchi, Alessandra, Paolo Brazzo, Mauro Sassi, Luca Beverina, Jacopo Pedrini, Francesco Meinardi y Angelo Monguzzi. "Triplet–triplet annihilation based photon up-conversion in hybrid molecule–semiconductor nanocrystal systems". Physical Chemistry Chemical Physics 21, n.º 23 (2019): 12353–59. http://dx.doi.org/10.1039/c9cp01692a.
Texto completoKiriu, Kenny, Jason Kumar y Jack Runburg. "The velocity-dependent J-factor of the Milky Way halo: does what happens in the galactic bulge stay in the galactic bulge?" Journal of Cosmology and Astroparticle Physics 2022, n.º 11 (1 de noviembre de 2022): 030. http://dx.doi.org/10.1088/1475-7516/2022/11/030.
Texto completoLange, Lucas, Frank Schäfer, Alexander Biewald, Richard Ciesielski y Achim Hartschuh. "Controlling photon antibunching from 1D emitters using optical antennas". Nanoscale 11, n.º 31 (2019): 14907–11. http://dx.doi.org/10.1039/c9nr03688a.
Texto completoYANG, MAO-ZHI. "THE CONTINUUM AND INTERFERENCE EFFECT IN $e^+e^-\to D^0\bar{D}^0$, D+D- Processes". Modern Physics Letters A 23, n.º 36 (30 de noviembre de 2008): 3113–21. http://dx.doi.org/10.1142/s0217732308026406.
Texto completoPérez-Ríos, Jesús, Sherwin T. Love y Chris H. Greene. "Two-photon total annihilation of molecular positronium". EPL (Europhysics Letters) 109, n.º 6 (1 de marzo de 2015): 63002. http://dx.doi.org/10.1209/0295-5075/109/63002.
Texto completoUllio, Piero y Lars Bergström. "Neutralino annihilation into a photon and aZboson". Physical Review D 57, n.º 3 (1 de febrero de 1998): 1962–71. http://dx.doi.org/10.1103/physrevd.57.1962.
Texto completoKalashnikov, N. P., E. I. Mulyarchik y A. S. Olchak. "Single-photon Annihilation of the Channeled Positrons". Physics Procedia 74 (2015): 165–68. http://dx.doi.org/10.1016/j.phpro.2015.09.180.
Texto completoCharalambous, S., M. Chardalas, S. Dedoussis, C. A. Eleftheriadis y A. K. Liolios. "Parameters affecting three-photon positron annihilation spectrometers". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 300, n.º 2 (enero de 1991): 297–302. http://dx.doi.org/10.1016/0168-9002(91)90440-2.
Texto completoAndersson, B., G. Gustafson y C. Sjögren. "Prompt photon production in e+e− annihilation". Nuclear Physics B 380, n.º 3 (agosto de 1992): 408–22. http://dx.doi.org/10.1016/0550-3213(92)90251-6.
Texto completoDiehl, M., P. Kroll y C. Vogt. "Two-photon annihilation into baryon-antibaryon pairs". European Physical Journal C 26, n.º 4 (febrero de 2003): 567–77. http://dx.doi.org/10.1140/epjc/s2002-01075-4.
Texto completoLee, Su-Yong, Jiyong Park, Se-Wan Ji, C. H. Raymond Ooi y Hai-Woong Lee. "Nonclassicality generated by photon annihilation-then-creation and creation-then-annihilation operations". Journal of the Optical Society of America B 26, n.º 8 (8 de julio de 2009): 1532. http://dx.doi.org/10.1364/josab.26.001532.
Texto completoZheleznyakov, V. V. y A. A. Litvinchuk. "One-photon and two-photon annihilation lines in gamma-bursts, II". Astrophysics and Space Science 112, n.º 1 (1985): 25–49. http://dx.doi.org/10.1007/bf00668407.
Texto completoYe, J. B., B. Z. Yang, X. W. Tang y Q. Zhu. "Measurement of photon polarization from the three-photon annihilation of orthopositronium". Physics Letters A 133, n.º 6 (noviembre de 1988): 309–11. http://dx.doi.org/10.1016/0375-9601(88)90450-1.
Texto completoZheleznyakov, V. V. y A. A. Litvinchuk. "One-photon and two-photon annihilation lines in gamma-bursts, I". Astrophysics and Space Science 109, n.º 2 (1985): 293–307. http://dx.doi.org/10.1007/bf00651276.
Texto completoBaluschev, Stanislav, Kartheek Katta, Yuri Avlasevich y Katharina Landfester. "Annihilation upconversion in nanoconfinement: solving the oxygen quenching problem". Materials Horizons 3, n.º 6 (2016): 478–86. http://dx.doi.org/10.1039/c6mh00289g.
Texto completoGray, Victor, Damir Dzebo, Angelica Lundin, Jonathan Alborzpour, Maria Abrahamsson, Bo Albinsson y Kasper Moth-Poulsen. "Photophysical characterization of the 9,10-disubstituted anthracene chromophore and its applications in triplet–triplet annihilation photon upconversion". Journal of Materials Chemistry C 3, n.º 42 (2015): 11111–21. http://dx.doi.org/10.1039/c5tc02626a.
Texto completoKozhuharov, Venelin. "Searching for dark sector with missing mass technique in fixed target experiments". EPJ Web of Conferences 212 (2019): 06001. http://dx.doi.org/10.1051/epjconf/201921206001.
Texto completoPeng, Jiang, Xinyan Guo, Xinpeng Jiang, Dahui Zhao y Yuguo Ma. "Developing efficient heavy-atom-free photosensitizers applicable to TTA upconversion in polymer films". Chemical Science 7, n.º 2 (2016): 1233–37. http://dx.doi.org/10.1039/c5sc03245h.
Texto completoYonemura, Hiroaki, Yuji Naka, Mitsuhiko Nishino, Hiroshi Sakaguchi y Sunao Yamada. "Switch of the magnetic field effect on photon upconversion based on sensitized triplet–triplet annihilation". Photochemical & Photobiological Sciences 15, n.º 12 (2016): 1462–67. http://dx.doi.org/10.1039/c6pp00264a.
Texto completoDzebo, Damir, Kasper Moth-Poulsen y Bo Albinsson. "Robust triplet–triplet annihilation photon upconversion by efficient oxygen scavenging". Photochemical & Photobiological Sciences 16, n.º 8 (2017): 1327–34. http://dx.doi.org/10.1039/c7pp00201g.
Texto completoVETTER, PAUL A. "EXPERIMENTAL TESTS OF FUNDAMENTAL SYMMETRIES IN POSITRONIUM ANNIHILATION". International Journal of Modern Physics A 19, n.º 23 (20 de septiembre de 2004): 3865–78. http://dx.doi.org/10.1142/s0217751x04020130.
Texto completo