Literatura académica sobre el tema "Photon annihilation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Photon annihilation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Photon annihilation"
Gajos, Aleksander. "Sensitivity of Discrete Symmetry Tests in the Positronium System with the J-PET Detector". Symmetry 12, n.º 8 (1 de agosto de 2020): 1268. http://dx.doi.org/10.3390/sym12081268.
Texto completoFanchiotti, H., C. A. García Canal y V. Vento. "Multiphoton annihilation of monopolium". International Journal of Modern Physics A 32, n.º 35 (20 de diciembre de 2017): 1750202. http://dx.doi.org/10.1142/s0217751x17502025.
Texto completoGertsen, Anders S., Mads Koerstz y Kurt V. Mikkelsen. "Benchmarking triplet–triplet annihilation photon upconversion schemes". Physical Chemistry Chemical Physics 20, n.º 17 (2018): 12182–92. http://dx.doi.org/10.1039/c8cp00588e.
Texto completoLingenfelter, Richard E. y Reuven Ramaty. "Annihilation Radiation and Gamma-Ray Continuum from the Galactic Center Region". Symposium - International Astronomical Union 136 (1989): 587–605. http://dx.doi.org/10.1017/s0074180900187091.
Texto completoBRODSKY, STANLEY J. "HIGH ENERGY PHOTON–PHOTON COLLISIONS AT A LINEAR COLLIDER". International Journal of Modern Physics A 20, n.º 31 (20 de diciembre de 2005): 7306–32. http://dx.doi.org/10.1142/s0217751x05031137.
Texto completoMohammed Ahmed, Elaf, Hadi J. M. Al-Agealy y Nada Farhan Kadhim. "Theoretical Calculation of Photon Emission from Quark-Antiquark Annihilation Using QCD Theory". Ibn AL-Haitham Journal For Pure and Applied Sciences 35, n.º 4 (20 de octubre de 2022): 37–44. http://dx.doi.org/10.30526/35.4.2879.
Texto completoChiba, M., J. Nakagawa, H. Tsugawa, R. Ogata y T. Nishimura. "A detector with high detection efficiency in 4- and 5-photon-positronium annihilations". Canadian Journal of Physics 80, n.º 11 (1 de noviembre de 2002): 1287–95. http://dx.doi.org/10.1139/p02-107.
Texto completoAKSENOV, A. G., R. RUFFINI, I. A. SIUTSOU y G. V. VERESHCHAGIN. "DYNAMICS AND EMISSION OF MILDLY RELATIVISTIC PLASMA". International Journal of Modern Physics: Conference Series 12 (enero de 2012): 1–9. http://dx.doi.org/10.1142/s2010194512006204.
Texto completoAhmed, Elaf Mohammed, Hadi J. M. Al-Agealy y Nada Farhan Kadhim. "Theoretical Study of Photons Spectra around High Energy of Quark-antiquark Using QCD Theory". NeuroQuantology 20, n.º 4 (6 de abril de 2022): 58–63. http://dx.doi.org/10.14704/nq.2022.20.4.nq22095.
Texto completoYe, Chen, Victor Gray, Khushbu Kushwaha, Sandeep Kumar Singh, Paul Erhart y Karl Börjesson. "Optimizing photon upconversion by decoupling excimer formation and triplet triplet annihilation". Physical Chemistry Chemical Physics 22, n.º 3 (2020): 1715–20. http://dx.doi.org/10.1039/c9cp06561j.
Texto completoTesis sobre el tema "Photon annihilation"
Deng, Fan. "Photon Upconversion Based on Triplet-Triplet Annihilation". Bowling Green State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1395249331.
Texto completoWilke, Bryn. "UPCONVERTING LOW POWER PHOTONS THROUGH TRIPLET-TRIPLET ANNIHILATION". Bowling Green State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1335378364.
Texto completoBerkowicz, Sharon, Helena Olsson y Henrik Broberg. "Evaluation of Amyloid Fibrils as Templates for Photon Upconversion by Sensitized Triplet-Triplet Annihilation". Thesis, KTH, Skolan för kemivetenskap (CHE), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215658.
Texto completoIntresset för solceller har ökat under de senaste åren, till stor del tillföljd av den globala uppvärmningen och de sinande oljeresurserna. Dagens solceller har dock problem med låg energi- och kostnadseffektivitet, vilket gör att solenergin än så länge har svårt att hävda sig på energimarknaden. Photon upconversion är ett fotofysikaliskt fenomen där fotoner med låg energi omvandlas till fotoner med hög energi. Den senaste tiden har denna process fått förnyat intresse och forskningen inom området har ökat, inte minst med sikte på att integrera processen i solceller och därmed öka dess effektivitet. Målet med denna studie var att undersöka huruvida amyloidfibriller kan användas som stomme för ett photon upconversion-system baserat på platinum-oktaetylporfyrin (PtOEP) och 9,10-difenylantracen (DPA). Dessa två organiska färgämnen är ett välkänt par som konverterar synligt ljus med låg frekvens till mer hög frekvent ljus i det synliga spektrumet, via en mekanism som kallas sensitized triplet-triplet annihilation. Amyloidfibriller är proteinbaserade fiberstrukturer med hög andel β-flak, vilka bildas genom självassociation av peptider. I denna studie skapades amyloidfibriller av vassleprotein genom upphettning i sur lösning. Färgämnena inkorporerades enligt en välbeprövad metod där proteinet mortlas tillsammans med färgämnena i fast tillstånd, innan fibrilleringsprocessen påbörjas. De fotofysikaliska egenskaperna hos fibriller med och utan färgämnen analyserade med UV-VIS samt fluorescensspektroskopi. Atomkraftsmikroskopi användes för att bekräfta att fibriller fanns i proven, samt för att studera dess struktur. De erhållna resultaten antyder att amyloidfibriller inte är ett optimalt material för systemet PtOEP/DPA, delvis på grund av att absorptions- och emissionsspektrumet för systemet överlappar med fibrillernas egna spektrum. Anti-Stokes emission detekterades, men denna är med stor sannolikhet inte orsakad av färgämnena. Dock noterades, intressant nog, att denna emission ökar betydligt i närvaro av färgämnena. En möjlighet är att denna emission är kopplad till monomerer i proteinet snarare än till fibrillstrukturen, eftersom emission observerades hos både nativt och fibrillerat protein. Framtida studier uppmuntras att vidare undersöka dessa effekter.
Aldousari, Hanan. "Study of 2-to-3 photon annihilation using hydrophilic material as hypoxic tumour phantom". Thesis, University of Surrey, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616952.
Texto completoRONCHI, ALESSANDRA. "Hybrid and Nanostructured materials for low power photon upconversion based on triplet-triplet annihilation". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/370864.
Texto completoIn my PhD project, I investigated the photophysical process of photon upconversion assisted by triplet-triplet annihilation (sTTA-UC) through spectroscopy studies in a variety of systems, profoundly different on many levels. In sTTA-UC high energy radiation is emitted from the fluorescent recombination of the excited singlet of an emitter molecule, previously populated via annihilation of the metastable triplet states of two emitters. This is a sensitized process since a sensitizer is necessary to harvest the low energy incident light and to transfer the stored energy to the emitters via Dexter energy transfer. Because its functioning relies on long-lived metastable triplets, this process can be highly efficient also under low power, noncoherent light. As such, sTTA-UC is particularly suited for solar applications as it can increase the conversion efficiency by reducing transmission losses. During my studies, I focused on addressing two crucial issues that still limit the application of upconverters in solar technologies, i.e. the limited storage ability of common organic sensitizers and the poor sTTA-UC performance in solid-state upconverters, which are intrinsically better suited than liquid solutions for technological applications. To solve the first problem, I investigated hybrid sensitizers, composed of semiconductor nanostructures decorated with conjugated organic ligands characterized by broadband absorption. CdSe nanocrystals (NCs) doped with gold cations and decorated with 9-anthracene carboxylic acid demonstrated to be efficient innovative broadband hybrid sensitizers. The doping strategy inserts into the NCs energy gap localized hole-accepting states where the holes localize on the picosecond timescale, outpacing hole transfer to the ligand HOMO. With this strategy, I achieved the UC efficiency of 12%, the record performance obtained so far for hybrid upconverters. I then discussed how the CdSe nanoplatelets surface and photophysical properties make them potential optimal light harvesters. My studies on the nanoplatelets-to-ligands energy transfer dependency on the surface ligand density revealed that the surface coverage is not homogeneous but proceeds in an island-like way promoted by π- π stacking and results in the formation of ligands aggregates on the nanoplatelets surfaces, which causes a redshift of the ligand triplet energy with critical repercussions on the sTTA-UC performance and on the emitter selection. To address the second issue, I investigated two solid-state upconverters, i.e. nanostructured glassy polymers that show similar macroscopic properties but fabricated via different approaches. They both feature liquid droplets of mean size less than 50 nm where the upconverting dyes accumulate, embedded in a rigid polymer matrix that grants excellent oxygen protection and optical quality and long-term stability. The dyes confinement allows to increase the effective local excitons density resulting in an enhanced UC efficiency at low excitation intensities, thanks to the reduced intermolecular distances and the activation of the confined sTTA-UC regime. I also introduced a new perylene derivative as emitter, specifically designed to prevent molecular aggregation to maximize its fluorescence efficiency. By employing this emitter, I achieved the record UC efficiency of 42%, which directly stems from the emitter molecular structure, as it limits the formation of aggregates, while guaranteeing excellent singlet generation efficiency upon TTA. I finally presented a perspective of the performances that can be achieved by combining the two topics considered, i.e. loading broadband sensitizers in nanostructured polymers. I highlighted that if the best trade-off between nanostructure size and energy distribution is met the maximum UC efficiency can be achieved at excitation powers orders of magnitude lower that the solar irradiance, therefore promoting the development of real-world solid-state upconverters.
Kang, Ji-Hwan. "Energy transfer enhancement of photon upconversion systems for solar energy harvesting". Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45846.
Texto completoAlkhorayef, Mohammed A. "The potential use of three photon positron annihilation in positron emission tomography for tumour hypoxia imaging". Thesis, University of Surrey, 2010. http://epubs.surrey.ac.uk/843299/.
Texto completoLlewellyn, T. J. "Evaluation of a multi-element ismuth germanate converter for high resolution and efficiency annihilation photon detection". Thesis, University of Bristol, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377349.
Texto completoAbuelhia, Elfatih Ibrahim. "The potential use of three photon positron annihilation processes as a new imaging modality for positron emission tomography (PET)". Thesis, University of Surrey, 2006. http://epubs.surrey.ac.uk/843017/.
Texto completoLissau, Jonas Sandby. "Non-Coherent Photon Upconversion on Dye-Sensitized Nanostructured ZrO2 Films for Efficient Solar Light Harvesting". Doctoral thesis, Uppsala universitet, Fysikalisk kemi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-229831.
Texto completoLibros sobre el tema "Photon annihilation"
Grimes, Dale M. Photon creation - annihilation: Continuum electromagnetic theory. Singapore: World Scientific, 2012.
Buscar texto completoK, Griest, Fermi National Accelerator Laboratory y United States. National Aeronautics and Space Administration., eds. Rate for annihilation of galactic dark matter into two photons. Batavia, Ill: Fermi National Accelerator Laboratory, 1989.
Buscar texto completoNational Aeronautics and Space Administration (NASA) Staff. Rate for Annihilation of Galactic Dark Matter into Two Photons. Independently Published, 2018.
Buscar texto completoHoring, Norman J. Morgenstern. Interacting Electron–Hole–Phonon System. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0011.
Texto completoCapítulos de libros sobre el tema "Photon annihilation"
Evans, Myron y Jean-Pierre Vigier. "Creation and Annihilation of Photons". En The Enigmatic Photon, 89–102. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-010-9838-0_6.
Texto completoGray, Victor. "Photon upconversion through triplet–triplet annihilation". En Photochemistry, 404–20. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788016520-00404.
Texto completoFalvard, Alain, Edmond Giraud, Agnieszka Jacholkowska, Karsten Jedamzik, Julien Lavalle, Gilbert Moultaka, Eric Nuss et al. "High Energy Photon Flux Prediction from Neutralino Annihilation in M 31". En ESO ASTROPHYSICS SYMPOSIA, 438–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/10857580_45.
Texto completoMonguzzi, Angelo. "Photon Upconversion Based on Sensitized Triplet-Triplet Annihilation (sTTA) in Solids". En Emerging Strategies to Reduce Transmission and Thermalization Losses in Solar Cells, 49–70. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70358-5_4.
Texto completoBaluschev, Stanislav. "Protective Strategies Toward Long-Term Operation of Annihilation Photon Energy Upconversion". En Emerging Strategies to Reduce Transmission and Thermalization Losses in Solar Cells, 149–67. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70358-5_8.
Texto completoDavydov, Andrey V. "Nuclear Resonant Scattering of Annihilation Photons". En Springer Tracts in Modern Physics, 141–71. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10524-6_5.
Texto completoKleinknecht, Konrad y Ulrich Uwer. "Symmetry Violations and Quark Flavour Physics". En Particle Physics Reference Library, 519–623. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38207-0_9.
Texto completoKucherenko, Michael G. "Relaxation of Holographic Record in the System with Annihilating Centers". En Applications of Photonic Technology 2, 157–65. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9250-8_26.
Texto completoHase, Muneaki, Kunie Ishioka, Kiminori Ushida y Masahiro Kitajima. "Annihilation of coherent LO phonon-plasmon coupled modes by lattice defects in n-GaAs". En Springer Proceedings in Physics, 186–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_81.
Texto completoZhakparov, R. K., A. I. Kozin, S. V. Makarov y S. P. Pivovarov. "Investigation by the Methods of NMR and Angular Correlation of Annihilation Photons (ACAP) of Cyclotron Irradiated Copper". En 25th Congress Ampere on Magnetic Resonance and Related Phenomena, 440. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-76072-3_228.
Texto completoActas de conferencias sobre el tema "Photon annihilation"
Rivlin, L. A. "Inducing of Gamma-ray Emission without Overconcentration of Excited Oscillators by High Optical Field". En High Resolution Fourier Transform Spectroscopy. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/hrfts.1994.mc3.
Texto completoVogt, C. "Two-photon annihilation into pion pairs". En PHOTON 2000: International Conference on the Structure and Interactions of the Photon. AIP, 2001. http://dx.doi.org/10.1063/1.1402857.
Texto completoAMSLER, C. "MESON RESONANCES IN PROTON-ANTIPROTON ANNIHILATION". En Proceedings of the International Conference on the Structure and Interactions of the Photon Including the 14th International Workshop on Photon-Photon Collisions. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777157_0051.
Texto completoAKHMETSHIN, R. R., E. V. ANASHKIN, V. SH. BANZAROV, L. M. BARKOV, N. S. BASHTOVOY, A. E. BONDAR, D. V. BONDAREV et al. "STUDY OF E+E- ANNIHILATION INTO HADRONS AT VEPP-2M". En Proceedings of the International Conference on the Structure and Interactions of the Photon Including the 14th International Workshop on Photon-Photon Collisions. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777157_0028.
Texto completoToussaint, Maxime, Roger Lecomte y Jean-Pierre Dussault. "Annihilation Photon Acolinearity with Ultra-fast ToF-PET". En 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE, 2020. http://dx.doi.org/10.1109/nss/mic42677.2020.9507968.
Texto completoPiper, Roland, Megumi Yoshida, Ned Ekins-Daukes, Saif Haque, Yuen Yap Cheng, Burkhard Fuckel, Tony Khoury et al. "Two-photon triplet-triplet annihilation upconversion for photovoltaics". En 2011 37th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2011. http://dx.doi.org/10.1109/pvsc.2011.6185936.
Texto completoVyas, Reeta y Surendra Singh. "Photon statistics of a nondegenerate optical parametric oscillator". En OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.tujj3.
Texto completoVOGT, C. "THE HANDBAG CONTRIBUTION TO TWO-PHOTON ANNIHILATION INTO MESON PAIRS". En Exclusive Processes at High Momentum Transfer. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776211_0031.
Texto completoZavatta, A., V. Parigi, M. S. Kim y M. Bellini. "Probing Quantum Rules with Single-Photon Creation and Annihilation Operators". En International Conference on Quantum Information. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/icqi.2008.qwa2.
Texto completoIshii, A., T. Uda y Y. K. Kato. "Room-temperature single photon emission from micron-long air-suspended carbon nanotubes". En JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.7p_a404_3.
Texto completoInformes sobre el tema "Photon annihilation"
Gold, M. S. Hard photon processes in electron-positron annihilation at 29 GeV. Office of Scientific and Technical Information (OSTI), noviembre de 1986. http://dx.doi.org/10.2172/7059641.
Texto completoDavier, M., M. Peskin y A. Snyder. Two-Photon Exchange Model for Production of NeutralMeson Pairs in e+ e- Annihilation. Office of Scientific and Technical Information (OSTI), julio de 2006. http://dx.doi.org/10.2172/886789.
Texto completoHiggins, P. D., F. H. Attix, J. H. Hubbell, S. M. Seltzer, M. J. Berger y C. H. Sibata. Mass energy-transfer and mass energy-absorption coefficients, including in-flight positron annihilation for photon energies 1 keV to 100 MeV. Gaithersburg, MD: National Institute of Standards and Technology, 1991. http://dx.doi.org/10.6028/nist.ir.4680.
Texto completoHiggens, P. D., F. H. Attix, J. H. Hubbell, S. M. Seltzer, M. J. Berger y C. H. Sibata. Mass energy-transfer and mass energy-absorption coefficients, including in-flight positron annihilation for photon energies 1 keV to 100 MeV. Gaithersburg, MD: National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.4812.
Texto completoShen, B. Contribution of the two-photon annihilation process in the measurement of sigma/sub t/ (e/sup +/e/sup /minus//. -->. hadrons at PEP). Office of Scientific and Technical Information (OSTI), enero de 1988. http://dx.doi.org/10.2172/6839454.
Texto completoStancari, Michelle Dawn. Two Photon Decay Widths of Charmonium Resonances Formed in Proton Antiproton Annihilations. Office of Scientific and Technical Information (OSTI), enero de 1999. http://dx.doi.org/10.2172/1421503.
Texto completoFast, James Elliot. Two Photon Decays of Charmonium States Produced in Proton - Anti-proton Annihilations. Office of Scientific and Technical Information (OSTI), enero de 1992. http://dx.doi.org/10.2172/1425849.
Texto completoFast, James Elliot. Two Photon Decays of Charmonium States Produced in Proton - Anti-proton Annihilations. Office of Scientific and Technical Information (OSTI), enero de 1992. http://dx.doi.org/10.2172/1426683.
Texto completoPedlar, Todd Kristofer. A study of Two Photon Decays of Charmonium Resonances Formed in Proton Anti-Proton Annihilations. Office of Scientific and Technical Information (OSTI), junio de 1999. http://dx.doi.org/10.2172/1371869.
Texto completo