Artículos de revistas sobre el tema "Phosphorylation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Phosphorylation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Hizli, Asli A., Yong Chi, Jherek Swanger, John H. Carter, Yi Liao, Markus Welcker, Alexey G. Ryazanov y Bruce E. Clurman. "Phosphorylation of Eukaryotic Elongation Factor 2 (eEF2) by Cyclin A–Cyclin-Dependent Kinase 2 Regulates Its Inhibition by eEF2 Kinase". Molecular and Cellular Biology 33, n.º 3 (26 de noviembre de 2012): 596–604. http://dx.doi.org/10.1128/mcb.01270-12.
Texto completoCoulonval, Katia, Hugues Kooken y Pierre P. Roger. "Coupling of T161 and T14 phosphorylations protects cyclin B–CDK1 from premature activation". Molecular Biology of the Cell 22, n.º 21 (noviembre de 2011): 3971–85. http://dx.doi.org/10.1091/mbc.e11-02-0136.
Texto completoADAMS, Ryan A., Xinran LIU, David S. WILLIAMS y Alexandra C. NEWTON. "Differential spatial and temporal phosphorylation of the visual receptor, rhodopsin, at two primary phosphorylation sites in mice exposed to light". Biochemical Journal 374, n.º 2 (1 de septiembre de 2003): 537–43. http://dx.doi.org/10.1042/bj20030408.
Texto completoVanoosthuyse, Vincent y Kevin G. Hardwick. "The Complexity of Bub1 Regulation: Phosphorylation, Phosphorylation, Phosphorylation". Cell Cycle 2, n.º 2 (7 de marzo de 2003): 118–19. http://dx.doi.org/10.4161/cc.2.2.343.
Texto completoPant, Harish C. y Veeranna. "Neurofilament phosphorylation". Biochemistry and Cell Biology 73, n.º 9-10 (1 de septiembre de 1995): 575–92. http://dx.doi.org/10.1139/o95-063.
Texto completoBhattacharyya, Sumit, Alip Borthakur, Arivarasu N. Anbazhagan, Shivani Katyal, Pradeep K. Dudeja y Joanne K. Tobacman. "Specific effects of BCL10 Serine mutations on phosphorylations in canonical and noncanonical pathways of NF-κB activation following carrageenan". American Journal of Physiology-Gastrointestinal and Liver Physiology 301, n.º 3 (septiembre de 2011): G475—G486. http://dx.doi.org/10.1152/ajpgi.00071.2011.
Texto completoCarty, DJ, DL Freas y AR Gear. "ADP causes subsecond changes in protein phosphorylation of platelets". Blood 70, n.º 2 (1 de agosto de 1987): 511–15. http://dx.doi.org/10.1182/blood.v70.2.511.511.
Texto completoCarty, DJ, DL Freas y AR Gear. "ADP causes subsecond changes in protein phosphorylation of platelets". Blood 70, n.º 2 (1 de agosto de 1987): 511–15. http://dx.doi.org/10.1182/blood.v70.2.511.bloodjournal702511.
Texto completoKabachnik, M. I., L. S. Zakharov, E. I. Goryunov y I. Yu Kudryavtsev. "Catalytic phosphorylation of polyfluoroalkanols. 11. ?-Polyfluoroalkylbenzyldichlorophosphates as phosphorylating agents in the catalytic phosphorylation of primary polyfluoroalkanols". Bulletin of the Academy of Sciences of the USSR Division of Chemical Science 38, n.º 7 (julio de 1989): 1522–26. http://dx.doi.org/10.1007/bf00978451.
Texto completoLanglais, Paul, Zhengping Yi y Lawrence J. Mandarino. "The Identification of Raptor as a Substrate for p44/42 MAPK". Endocrinology 152, n.º 4 (15 de febrero de 2011): 1264–73. http://dx.doi.org/10.1210/en.2010-1271.
Texto completoViolin, Jonathan D., Jin Zhang, Roger Y. Tsien y Alexandra C. Newton. "A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C". Journal of Cell Biology 161, n.º 5 (2 de junio de 2003): 899–909. http://dx.doi.org/10.1083/jcb.200302125.
Texto completoVary, Thomas C. y Christopher J. Lynch. "Meal feeding enhances formation of eIF4F in skeletal muscle: role of increased eIF4E availability and eIF4G phosphorylation". American Journal of Physiology-Endocrinology and Metabolism 290, n.º 4 (abril de 2006): E631—E642. http://dx.doi.org/10.1152/ajpendo.00460.2005.
Texto completoNorling, L. L. y M. Landt. "Comparison of Ca2+-dependent phosphorylation in viable dispersed brain cells with calmodulin-dependent protein kinase activity in cell-free preparations of rat brain". Biochemical Journal 232, n.º 3 (15 de diciembre de 1985): 629–35. http://dx.doi.org/10.1042/bj2320629.
Texto completoDusi, S., M. Donini y F. Rossi. "Tyrosine phosphorylation and activation of NADPH oxidase in human neutrophils: a possible role for MAP kinases and for a 75 kDa protein". Biochemical Journal 304, n.º 1 (15 de noviembre de 1994): 243–50. http://dx.doi.org/10.1042/bj3040243.
Texto completoKNEBEL, Axel, Claire E. HAYDON, Nick MORRICE y Philip COHEN. "Stress-induced regulation of eukaryotic elongation factor 2 kinase by SB 203580-sensitive and −insensitive pathways". Biochemical Journal 367, n.º 2 (15 de octubre de 2002): 525–32. http://dx.doi.org/10.1042/bj20020916.
Texto completoHarper, Mary-Ellen y Martin D. Brand. "Hyperthyroidism stimulates mitochondrial proton leak and ATP turnover in rat hepatocytes but does not change the overall kinetics of substrate oxidation reactions". Canadian Journal of Physiology and Pharmacology 72, n.º 8 (1 de agosto de 1994): 899–908. http://dx.doi.org/10.1139/y94-127.
Texto completoCohen, M. E., G. W. Sharp y M. Donowitz. "Suggestion of a role for calmodulin and phosphorylation in regulation of rabbit ileal electrolyte transport: effects of promethazine". American Journal of Physiology-Gastrointestinal and Liver Physiology 251, n.º 5 (1 de noviembre de 1986): G710—G717. http://dx.doi.org/10.1152/ajpgi.1986.251.5.g710.
Texto completoGeraghty, Kathryn M., Shuai Chen, Jean E. Harthill, Adel F. Ibrahim, Rachel Toth, Nick A. Morrice, Franck Vandermoere, Greg B. Moorhead, D. Grahame Hardie y Carol MacKintosh. "Regulation of multisite phosphorylation and 14-3-3 binding of AS160 in response to IGF-1, EGF, PMA and AICAR". Biochemical Journal 407, n.º 2 (25 de septiembre de 2007): 231–41. http://dx.doi.org/10.1042/bj20070649.
Texto completoSolomon, M. J., T. Lee y M. W. Kirschner. "Role of phosphorylation in p34cdc2 activation: identification of an activating kinase." Molecular Biology of the Cell 3, n.º 1 (enero de 1992): 13–27. http://dx.doi.org/10.1091/mbc.3.1.13.
Texto completoScheid, Michael P., Paola A. Marignani y James R. Woodgett. "Multiple Phosphoinositide 3-Kinase-Dependent Steps in Activation of Protein Kinase B". Molecular and Cellular Biology 22, n.º 17 (1 de septiembre de 2002): 6247–60. http://dx.doi.org/10.1128/mcb.22.17.6247-6260.2002.
Texto completoBenes, Cyril y Stephen P. Soltoff. "Modulation of PKCδ tyrosine phosphorylation and activity in salivary and PC-12 cells by Src kinases". American Journal of Physiology-Cell Physiology 280, n.º 6 (1 de junio de 2001): C1498—C1510. http://dx.doi.org/10.1152/ajpcell.2001.280.6.c1498.
Texto completoVendelbo, M. H., A. B. Møller, J. T. Treebak, L. C. Gormsen, L. J. Goodyear, J. F. P. Wojtaszewski, J. O. L. Jørgensen, N. Møller y N. Jessen. "Sustained AS160 and TBC1D1 phosphorylations in human skeletal muscle 30 min after a single bout of exercise". Journal of Applied Physiology 117, n.º 3 (1 de agosto de 2014): 289–96. http://dx.doi.org/10.1152/japplphysiol.00044.2014.
Texto completoGaplovska-Kysela, Katarina y Andrea Sevcovicova. "Phosphorylation". Cell Cycle 12, n.º 5 (marzo de 2013): 716. http://dx.doi.org/10.4161/cc.23910.
Texto completoBABY, Y., M. TSUHAKO y N. YOZA. "ChemInform Abstract: Phosphorylation of Biomolecules with Inorganic Phosphorylating Agents." ChemInform 25, n.º 25 (19 de agosto de 2010): no. http://dx.doi.org/10.1002/chin.199425285.
Texto completoGreiwe, Julia F., Thomas C. R. Miller, Julia Locke, Fabrizio Martino, Steven Howell, Anne Schreiber, Andrea Nans, John F. X. Diffley y Alessandro Costa. "Structural mechanism for the selective phosphorylation of DNA-loaded MCM double hexamers by the Dbf4-dependent kinase". Nature Structural & Molecular Biology 29, n.º 1 (28 de diciembre de 2021): 10–20. http://dx.doi.org/10.1038/s41594-021-00698-z.
Texto completoAlmagor, Lior, Ivan S. Ufimtsev, Aruna Ayer, Jingzhi Li y William I. Weis. "Structural insights into the aPKC regulatory switch mechanism of the human cell polarity protein lethal giant larvae 2". Proceedings of the National Academy of Sciences 116, n.º 22 (14 de mayo de 2019): 10804–12. http://dx.doi.org/10.1073/pnas.1821514116.
Texto completoHer, J. H., S. Lakhani, K. Zu, J. Vila, P. Dent, T. W. Sturgill y M. J. Weber. "Dual phosphorylation and autophosphorylation in mitogen-activated protein (MAP) kinase activation". Biochemical Journal 296, n.º 1 (15 de noviembre de 1993): 25–31. http://dx.doi.org/10.1042/bj2960025.
Texto completoHamáková, Kateřina, David Potěšil, Ondřej Bernatik, Igor Červenka, Matěj Rádsetoulal, Vitězslav Bryja y Zbyněk Zdráhal. "Semiquantitative Assessment of Dishevelled-3 Phosphorylation Status by Mass Spectrometry". Hungarian Journal of Industry and Chemistry 46, n.º 1 (1 de julio de 2018): 3–6. http://dx.doi.org/10.1515/hjic-2018-0002.
Texto completoMaik-Rachline, Galia, Shmuel Shaltiel y Rony Seger. "Extracellular phosphorylation converts pigment epithelium–derived factor from a neurotrophic to an antiangiogenic factor". Blood 105, n.º 2 (15 de enero de 2005): 670–78. http://dx.doi.org/10.1182/blood-2004-04-1569.
Texto completoAmano, Mutsuki, Yoko Kanazawa, Kei Kozawa y Kozo Kaibuchi. "Identification of the Kinase-Substrate Recognition Interface between MYPT1 and Rho-Kinase". Biomolecules 12, n.º 2 (18 de enero de 2022): 159. http://dx.doi.org/10.3390/biom12020159.
Texto completoZheng, Yupeng, Sam John, James J. Pesavento, Jennifer R. Schultz-Norton, R. Louis Schiltz, Sonjoon Baek, Ann M. Nardulli, Gordon L. Hager, Neil L. Kelleher y Craig A. Mizzen. "Histone H1 phosphorylation is associated with transcription by RNA polymerases I and II". Journal of Cell Biology 189, n.º 3 (3 de mayo de 2010): 407–15. http://dx.doi.org/10.1083/jcb.201001148.
Texto completoThornton, Tina y Mercedes Rincon. "The role of p38 MAPK/GSK3β signaling in T and B lymphocytes undergoing programmed DNA recombination (111.47)". Journal of Immunology 188, n.º 1_Supplement (1 de mayo de 2012): 111.47. http://dx.doi.org/10.4049/jimmunol.188.supp.111.47.
Texto completoSoltys, Carrie-Lynn M., Suzanne Kovacic y Jason R. B. Dyck. "Activation of cardiac AMP-activated protein kinase by LKB1 expression or chemical hypoxia is blunted by increased Akt activity". American Journal of Physiology-Heart and Circulatory Physiology 290, n.º 6 (junio de 2006): H2472—H2479. http://dx.doi.org/10.1152/ajpheart.01206.2005.
Texto completoLakkireddy, Dr Suresh. "MOLECULAR ADVANCEMENTS IN PROTEIN PHOSPHORYLATION METHODOLOGIES: A RAPID REVIEW". Era's Journal of Medical Research 10, n.º 2 (diciembre de 2023): 35–38. http://dx.doi.org/10.24041/ejmr2023.33.
Texto completoAkiyama, T., T. Saito, H. Ogawara, K. Toyoshima y T. Yamamoto. "Tumor promoter and epidermal growth factor stimulate phosphorylation of the c-erbB-2 gene product in MKN-7 human adenocarcinoma cells". Molecular and Cellular Biology 8, n.º 3 (marzo de 1988): 1019–26. http://dx.doi.org/10.1128/mcb.8.3.1019-1026.1988.
Texto completoAkiyama, T., T. Saito, H. Ogawara, K. Toyoshima y T. Yamamoto. "Tumor promoter and epidermal growth factor stimulate phosphorylation of the c-erbB-2 gene product in MKN-7 human adenocarcinoma cells." Molecular and Cellular Biology 8, n.º 3 (marzo de 1988): 1019–26. http://dx.doi.org/10.1128/mcb.8.3.1019.
Texto completoAhn, Jae Suk, Andrea Musacchio, Marina Mapelli, Jake Ni, Leonard Scinto, Ross Stein, Kenneth S. Kosik y Li-An Yeh. "Development of an Assay to Screen for Inhibitors of Tau Phosphorylation by Cdk5". Journal of Biomolecular Screening 9, n.º 2 (marzo de 2004): 122–31. http://dx.doi.org/10.1177/1087057103260594.
Texto completoVilimek, Dino y Vincent Duronio. "Cytokine-stimulated phosphorylation of GSK-3 is primarily dependent upon PKCs, not PKB". Biochemistry and Cell Biology 84, n.º 1 (1 de febrero de 2006): 20–29. http://dx.doi.org/10.1139/o05-154.
Texto completoOgura, Masato, Junko Yamaki, Miwako K. Homma y Yoshimi Homma. "Mitochondrial c-Src regulates cell survival through phosphorylation of respiratory chain components". Biochemical Journal 447, n.º 2 (26 de septiembre de 2012): 281–89. http://dx.doi.org/10.1042/bj20120509.
Texto completoShimasaki, Kentaro, Keigo Kumagai, Shota Sakai, Toshiyuki Yamaji y Kentaro Hanada. "Hyperosmotic Stress Induces Phosphorylation of CERT and Enhances Its Tethering throughout the Endoplasmic Reticulum". International Journal of Molecular Sciences 23, n.º 7 (5 de abril de 2022): 4025. http://dx.doi.org/10.3390/ijms23074025.
Texto completoKurihara, Kinji, Nobuo Nakanishi, Marilyn L. Moore-Hoon y R. James Turner. "Phosphorylation of the salivary Na+-K+-2Cl− cotransporter". American Journal of Physiology-Cell Physiology 282, n.º 4 (1 de abril de 2002): C817—C823. http://dx.doi.org/10.1152/ajpcell.00352.2001.
Texto completoMatusiak, Magdalena, Nina Van Opdenbosch, Lieselotte Vande Walle, Jean-Claude Sirard, Thirumala-Devi Kanneganti y Mohamed Lamkanfi. "Flagellin-induced NLRC4 phosphorylation primes the inflammasome for activation by NAIP5". Proceedings of the National Academy of Sciences 112, n.º 5 (20 de enero de 2015): 1541–46. http://dx.doi.org/10.1073/pnas.1417945112.
Texto completoSong, Weimeng, Li Hu, Zhihui Ma, Lei Yang y Jianming Li. "Importance of Tyrosine Phosphorylation in Hormone-Regulated Plant Growth and Development". International Journal of Molecular Sciences 23, n.º 12 (13 de junio de 2022): 6603. http://dx.doi.org/10.3390/ijms23126603.
Texto completoTinsley, John H., Elena E. Ustinova, Wenjuan Xu y Sarah Y. Yuan. "Src-dependent, neutrophil-mediated vascular hyperpermeability and β-catenin modification". American Journal of Physiology-Cell Physiology 283, n.º 6 (1 de diciembre de 2002): C1745—C1751. http://dx.doi.org/10.1152/ajpcell.00230.2002.
Texto completoHolt, K. H., B. G. Kasson y J. E. Pessin. "Insulin stimulation of a MEK-dependent but ERK-independent SOS protein kinase." Molecular and Cellular Biology 16, n.º 2 (febrero de 1996): 577–83. http://dx.doi.org/10.1128/mcb.16.2.577.
Texto completoBishop, R., R. Martinez, M. J. Weber, P. J. Blackshear, S. Beatty, R. Lim y H. R. Herschman. "Protein phosphorylation in a tetradecanoyl phorbol acetate-nonproliferative variant of 3T3 cells". Molecular and Cellular Biology 5, n.º 9 (septiembre de 1985): 2231–37. http://dx.doi.org/10.1128/mcb.5.9.2231-2237.1985.
Texto completoBishop, R., R. Martinez, M. J. Weber, P. J. Blackshear, S. Beatty, R. Lim y H. R. Herschman. "Protein phosphorylation in a tetradecanoyl phorbol acetate-nonproliferative variant of 3T3 cells." Molecular and Cellular Biology 5, n.º 9 (septiembre de 1985): 2231–37. http://dx.doi.org/10.1128/mcb.5.9.2231.
Texto completoDrepper, Friedel, Jacek Biernat, Senthilvelrajan Kaniyappan, Helmut E. Meyer, Eva Maria Mandelkow, Bettina Warscheid y Eckhard Mandelkow. "A combinatorial native MS and LC-MS/MS approach reveals high intrinsic phosphorylation of human Tau but minimal levels of other key modifications". Journal of Biological Chemistry 295, n.º 52 (26 de octubre de 2020): 18213–25. http://dx.doi.org/10.1074/jbc.ra120.015882.
Texto completoL'Allemain, G., J. H. Her, J. Wu, T. W. Sturgill y M. J. Weber. "Growth factor-induced activation of a kinase activity which causes regulatory phosphorylation of p42/microtubule-associated protein kinase". Molecular and Cellular Biology 12, n.º 5 (mayo de 1992): 2222–29. http://dx.doi.org/10.1128/mcb.12.5.2222-2229.1992.
Texto completoL'Allemain, G., J. H. Her, J. Wu, T. W. Sturgill y M. J. Weber. "Growth factor-induced activation of a kinase activity which causes regulatory phosphorylation of p42/microtubule-associated protein kinase." Molecular and Cellular Biology 12, n.º 5 (mayo de 1992): 2222–29. http://dx.doi.org/10.1128/mcb.12.5.2222.
Texto completo