Artículos de revistas sobre el tema "Phosphine-sulfonate"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Phosphine-sulfonate.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Phosphine-sulfonate".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Römbke, Patric, Annette Schier y Hubert Schmidbaur. "(Phosphine)Silver(I) Sulfonate Complexes". Zeitschrift für Naturforschung B 58, n.º 1 (1 de enero de 2003): 168–72. http://dx.doi.org/10.1515/znb-2003-0126.

Texto completo
Resumen
Abstract Phosphine)silver(I) organosulfonate complexes of the type (R3P)AgOS(O)2R’ have been prepared in good yields from the corresponding silver sulfonates and tertiary phosphines in dichloromethane solution [R3 = Ph3, Ph2(2-Py), Me2Ph, with R’ = 4-Me-C6H4; R = Ph, R’ = Et and 2,5-Me2-C6H4]. If ethanol is present in the reaction mixture, the products contain one equivalent of ethanol. The crystal structures of (Ph3P)AgOS(O)2(C6H4-4-Me)(EtOH) (1), and (Me2PhP)AgOS(O)2(C6H4-4- Me) (5) have been determined. Complex 1 is present as a dimer in which the monomeric units feature intermolecular Ag-O donor/acceptor bonding in a four-membered ring. The coordination sphere of the silver atoms is further complemented by an ethanol molecule which is also engaged in hydrogen bonding with one of the sulfonate oxygen atoms. The solvent-free complex 5 is associated into helical chains via Ag-O coordinative bonds which provide the silver atoms with a distorted planar T-shaped coordination.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Yon, Marjorie, Claire Pibourret, Jean-Daniel Marty y Diana Ciuculescu-Pradines. "Easy colorimetric detection of gadolinium ions based on gold nanoparticles: key role of phosphine-sulfonate ligands". Nanoscale Advances 2, n.º 10 (2020): 4671–81. http://dx.doi.org/10.1039/d0na00374c.

Texto completo
Resumen
Specific interactions between sulfonate groups of phosphine-sulfonate ligands on the surface of Au nanoparticles and Gd3+ ions allow the colorimetric detection of Gd3+ ions at the μM level.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Xia, Jian, Yixin Zhang, Xiaoqiang Hu, Xin Ma, Lei Cui, Jianfu Zhang y Zhongbao Jian. "Sterically very bulky aliphatic/aromatic phosphine-sulfonate palladium catalysts for ethylene polymerization and copolymerization with polar monomers". Polymer Chemistry 10, n.º 4 (2019): 546–54. http://dx.doi.org/10.1039/c8py01568f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Song, Guangzhi, Wenmin Pang, Weimin Li, Min Chen y Changle Chen. "Phosphine-sulfonate-based nickel catalysts: ethylene polymerization and copolymerization with polar-functionalized norbornenes". Polymer Chemistry 8, n.º 47 (2017): 7400–7405. http://dx.doi.org/10.1039/c7py01661a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Na, Yinna, Dan Zhang y Changle Chen. "Modulating polyolefin properties through the incorporation of nitrogen-containing polar monomers". Polymer Chemistry 8, n.º 15 (2017): 2405–9. http://dx.doi.org/10.1039/c7py00127d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Chen, Min, Wenping Zou, Zhengguo Cai y Changle Chen. "Norbornene homopolymerization and copolymerization with ethylene by phosphine-sulfonate nickel catalysts". Polymer Chemistry 6, n.º 14 (2015): 2669–76. http://dx.doi.org/10.1039/c5py00010f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Leonard, Nadia G., Grace V. Parker, Paul G. Williard y Wesley H. Bernskoetter. "Coordination Chemistry of Iridium Phosphine–Sulfonate Complexes". Journal of Inorganic and Organometallic Polymers and Materials 24, n.º 1 (2 de octubre de 2013): 157–63. http://dx.doi.org/10.1007/s10904-013-9966-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Zhou, Xiaoyuan, Sébastien Bontemps y Richard F. Jordan. "Base-Free Phosphine−Sulfonate Nickel Benzyl Complexes". Organometallics 27, n.º 19 (13 de octubre de 2008): 4821–24. http://dx.doi.org/10.1021/om800741w.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Rezabal, E., J. M. Ugalde y G. Frenking. "The trans Effect in Palladium Phosphine Sulfonate Complexes". Journal of Physical Chemistry A 121, n.º 40 (2 de octubre de 2017): 7709–16. http://dx.doi.org/10.1021/acs.jpca.7b06856.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Zhu, Ling, Shuang Li, Xiaohui Kang, Wenzhen Zhang y Yi Luo. "A DFT Study of the Copolymerization of Methyl Vinyl Sulfone and Ethylene Catalyzed by Phosphine–Sulfonate and α-Diimine Palladium Complexes". Catalysts 13, n.º 6 (20 de junio de 2023): 1026. http://dx.doi.org/10.3390/catal13061026.

Texto completo
Resumen
Density functional theory (DFT) calculations were comparatively carried out to reveal the origins of different catalytic performances from phosphine–benzene sulfonate (A, [{P^O}PdMe(L)] (P^O = Κ2-P,O-Ar2PC6H4SO3 with Ar = 2-MeOC6H4)) and α-diimine (B, [{N^N}PdMe(Cl)] (N^N = (ArN=C(Me)-C(Me)=NAr) with Ar = 2,6-iPr2C6H3)) palladium complexes toward the copolymerization of ethylene and methyl vinyl sulfone (MVS). Having achieved agreement between theory and experiment, it was found that the favorable 2,1-selective insertion of MVS into phosphine–sulfonate palladium complex A was due to there being less structural deformations in the catalyst and monomer. Both the MVS and ethylene insertions were calculated, and the former was found to be more favorable for chain initiation and chain propagation. In the case of α-diimine palladium system B, the resulting product of the first MVS insertion was quite stable, and the stronger O-backbiting interaction hampered the insertion of the incoming ethylene molecule. These computational results are expected to provide some hints for the design of transition metal copolymerization catalysts.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Bashir, Oumar, Laurence Piche y Jerome P. Claverie. "18-Electron Ruthenium Phosphine Sulfonate Catalysts for Olefin Metathesis". Organometallics 33, n.º 14 (9 de julio de 2014): 3695–701. http://dx.doi.org/10.1021/om500212x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Ito, Shingo, Yusuke Ota y Kyoko Nozaki. "Ethylene/allyl monomer cooligomerization by nickel/phosphine–sulfonate catalysts". Dalton Transactions 41, n.º 45 (2012): 13807. http://dx.doi.org/10.1039/c2dt31771k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Du, Qing, Liping Zhao, Lihua Guo, Xingxing Ge, Shumiao Zhang, Zhishan Xu y Zhe Liu. "Lysosome-targeted Cyclometalated Iridium (III) Anticancer Complexes Bearing Phosphine-Sulfonate Ligands". Applied Organometallic Chemistry 33, n.º 2 (7 de diciembre de 2018): e4746. http://dx.doi.org/10.1002/aoc.4746.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Blaskó, Andrei, Clifford A. Bunton, Eduardo A. Toledo, Paul M. Holland y Faruk Nome. "SN2 reactions of a sulfonate ester in mixed cationic/phosphine oxide micelles". J. Chem. Soc., Perkin Trans. 2, n.º 12 (1995): 2367–73. http://dx.doi.org/10.1039/p29950002367.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Anselment, Timo M. J., Christian Wichmann, Carly E. Anderson, Eberhardt Herdtweck y Bernhard Rieger. "Structural Modification of Functionalized Phosphine Sulfonate-Based Palladium(II) Olefin Polymerization Catalysts". Organometallics 30, n.º 24 (26 de diciembre de 2011): 6602–11. http://dx.doi.org/10.1021/om200734x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Ravasio, Andrea, Laura Boggioni y Incoronata Tritto. "Copolymerization of Ethylene with Norbornene by Neutral Aryl Phosphine Sulfonate Palladium Catalyst". Macromolecules 44, n.º 11 (14 de junio de 2011): 4180–86. http://dx.doi.org/10.1021/ma2006427.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Skupov, Kirill M., Pooja R. Marella, Michel Simard, Glenn P. A. Yap, Nathan Allen, David Conner, Brian L. Goodall y Jerome P. Claverie. "Palladium Aryl Sulfonate Phosphine Catalysts for the Copolymerization of Acrylates with Ethene". Macromolecular Rapid Communications 28, n.º 20 (15 de octubre de 2007): 2033–38. http://dx.doi.org/10.1002/marc.200700370.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Weng, Wei, Zhongliang Shen y Richard F. Jordan. "Copolymerization of Ethylene and Vinyl Fluoride by (Phosphine-Sulfonate)Pd(Me)(py) Catalysts". Journal of the American Chemical Society 129, n.º 50 (diciembre de 2007): 15450–51. http://dx.doi.org/10.1021/ja0774717.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Luo, Shuji, Javier Vela, Graham R. Lief y Richard F. Jordan. "Copolymerization of Ethylene and Alkyl Vinyl Ethers by a (Phosphine- sulfonate)PdMe Catalyst". Journal of the American Chemical Society 129, n.º 29 (julio de 2007): 8946–47. http://dx.doi.org/10.1021/ja072562p.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Zou, Chen, Wenmin Pang y Changle Chen. "Influence of chelate ring size on the properties of phosphine-sulfonate palladium catalysts". Science China Chemistry 61, n.º 9 (25 de abril de 2018): 1175–78. http://dx.doi.org/10.1007/s11426-018-9237-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Yang, Bangpei, Wenmin Pang y Min Chen. "Redox Control in Olefin Polymerization Catalysis by Phosphine-Sulfonate Palladium and Nickel Complexes". European Journal of Inorganic Chemistry 2017, n.º 18 (10 de mayo de 2017): 2510–14. http://dx.doi.org/10.1002/ejic.201700214.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Chen, Min, Bangpei Yang y Changle Chen. "Redox-Controlled Olefin (Co)Polymerization Catalyzed by Ferrocene-Bridged Phosphine-Sulfonate Palladium Complexes". Angewandte Chemie International Edition 54, n.º 51 (2 de noviembre de 2015): 15520–24. http://dx.doi.org/10.1002/anie.201507274.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Chen, Min, Bangpei Yang y Changle Chen. "Redox-Controlled Olefin (Co)Polymerization Catalyzed by Ferrocene-Bridged Phosphine-Sulfonate Palladium Complexes". Angewandte Chemie 127, n.º 51 (2 de noviembre de 2015): 15740–44. http://dx.doi.org/10.1002/ange.201507274.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Tan, Chen, Muhammad Qasim, Wenmin Pang y Changle Chen. "Ligand–metal secondary interactions in phosphine–sulfonate palladium and nickel catalyzed ethylene (co)polymerization". Polymer Chemistry 11, n.º 2 (2020): 411–16. http://dx.doi.org/10.1039/c9py00904c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Liang, Tao y Changle Chen. "Side-Arm Control in Phosphine-Sulfonate Palladium- and Nickel-Catalyzed Ethylene Polymerization and Copolymerization". Organometallics 36, n.º 12 (15 de junio de 2017): 2338–44. http://dx.doi.org/10.1021/acs.organomet.7b00294.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Kochi, Takuya, Shusuke Noda, Kenji Yoshimura y Kyoko Nozaki. "Formation of Linear Copolymers of Ethylene and Acrylonitrile Catalyzed by Phosphine Sulfonate Palladium Complexes". Journal of the American Chemical Society 129, n.º 29 (julio de 2007): 8948–49. http://dx.doi.org/10.1021/ja0725504.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Nakamura, Akifumi, Takeharu Kageyama, Hiroki Goto, Brad P. Carrow, Shingo Ito y Kyoko Nozaki. "P-Chiral Phosphine–Sulfonate/Palladium-Catalyzed Asymmetric Copolymerization of Vinyl Acetate with Carbon Monoxide". Journal of the American Chemical Society 134, n.º 30 (23 de julio de 2012): 12366–69. http://dx.doi.org/10.1021/ja3044344.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Lanzinger, Dominik, Marco M. Giuman, Timo M. J. Anselment y Bernhard Rieger. "Copolymerization of Ethylene and 3,3,3-Trifluoropropene Using (Phosphine-sulfonate)Pd(Me)(DMSO) as Catalyst". ACS Macro Letters 3, n.º 9 (4 de septiembre de 2014): 931–34. http://dx.doi.org/10.1021/mz5004344.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Yang, Bangpei, Shuoyan Xiong y Changle Chen. "Manipulation of polymer branching density in phosphine-sulfonate palladium and nickel catalyzed ethylene polymerization". Polym. Chem. 8, n.º 40 (2017): 6272–76. http://dx.doi.org/10.1039/c7py01281k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Kochi, Takuya, Kenji Yoshimura y Kyoko Nozaki. "Synthesis of anionic methylpalladium complexes with phosphine–sulfonate ligands and their activities for olefin polymerization". Dalton Trans., n.º 1 (2006): 25–27. http://dx.doi.org/10.1039/b512452m.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Rezabal, Elixabete, José M. Asua y Jesus M. Ugalde. "Homopolymerization of Ethylene by Palladium Phosphine Sulfonate Catalysts: The Role of Structural and Environmental Factors". Organometallics 34, n.º 1 (31 de diciembre de 2014): 373–80. http://dx.doi.org/10.1021/om5011947.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Sun, Jiajie, Min Chen, Gen Luo, Changle Chen y Yi Luo. "Diphosphazane-monoxide and Phosphine-sulfonate Palladium Catalyzed Ethylene Copolymerization with Polar Monomers: A Computational Study". Organometallics 38, n.º 3 (30 de enero de 2019): 638–46. http://dx.doi.org/10.1021/acs.organomet.8b00796.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Wu, Zixia, Min Chen y Changle Chen. "Ethylene Polymerization and Copolymerization by Palladium and Nickel Catalysts Containing Naphthalene-Bridged Phosphine–Sulfonate Ligands". Organometallics 35, n.º 10 (16 de marzo de 2016): 1472–79. http://dx.doi.org/10.1021/acs.organomet.6b00076.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Kageyama, Takeharu, Shingo Ito y Kyoko Nozaki. "Vinylarene/CO Copolymerization and Vinylarene/Polar Vinyl Monomer/CO Terpolymerization Using Palladium/Phosphine-Sulfonate Catalysts". Chemistry - An Asian Journal 6, n.º 2 (20 de enero de 2011): 690–97. http://dx.doi.org/10.1002/asia.201000668.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Zhang, Randi, Rong Gao, Qingqiang Gou, Jingjing Lai y Xinyang Li. "Recent Advances in the Copolymerization of Ethylene with Polar Comonomers by Nickel Catalysts". Polymers 14, n.º 18 (12 de septiembre de 2022): 3809. http://dx.doi.org/10.3390/polym14183809.

Texto completo
Resumen
The less-expensive and earth-abundant nickel catalyst is highly promising in the copolymerization of ethylene with polar monomers and has thus attracted increasing attention in both industry and academia. Herein, we have summarized the recent advancements made in the state-of-the-art nickel catalysts with different types of ligands for ethylene copolymerization and how these modifications influence the catalyst performance, as well as new polymerization modulation strategies. With regard to α-diimine, salicylaldimine/ketoiminato, phosphino-phenolate, phosphine-sulfonate, bisphospnine monoxide, N-heterocyclic carbene and other unclassified chelates, the properties of each catalyst and fine modulation of key copolymerization parameters (activity, molecular weight, comonomer incorporation rate, etc.) are revealed in detail. Despite significant achievements, many opportunities and possibilities are yet to be fully addressed, and a brief outlook on the future development and long-standing challenges is provided.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Kapdi, Anant R., Shatrughn Bhilare, Santosh Kori, Harshita Shet, Gundapally Balaram, Koosam Mahendar y Yogesh S. Sanghvi. "Scale-Up of a Heck Alkenylation Reaction: Application to the Synthesis of an Amino-Modifier Nucleoside ‘Ruth Linker’". Synthesis 52, n.º 23 (8 de septiembre de 2020): 3595–603. http://dx.doi.org/10.1055/s-0040-1707260.

Texto completo
Resumen
AbstractRuth linker is a C5 pyrimidine modified nucleoside analogue widely utilized for the incorporation of a primary amine in a synthetic oligonucleotide. The increasing demand for non-radioactive labeling, detection of biomolecules, and assembly of COVID-19 test kits has triggered a need for scale-up of Ruth linker. Herein, an efficient protocol involving a palladium-catalyzed Heck alkenylation is described. The synthesis has been optimized with a goal of low catalyst concentration, column-free isolation, high product purity, reproducibility, and shorter reaction time. The scalability and utility of the process have been demonstrated successfully on a 100 g scale (starting material). Additionally, for scale-up of the Heck alkenylation protocol, 7-phospha-1,3,5-triaza-adamantanebutane sulfonate (PTABS) as the coordinating caged phosphine ligand was also synthesized on a multigram scale after careful optimization of the conditions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Burke, Nichola J., Andrew D. Burrows, Mary F. Mahon y John E. Warren. "Hydrogen bond network structures based on sulfonated phosphine ligands: The effects of complex geometry, cation substituents and phosphine oxidation on guanidinium sulfonate sheet formation". Inorganica Chimica Acta 359, n.º 11 (agosto de 2006): 3497–506. http://dx.doi.org/10.1016/j.ica.2006.01.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Noda, Shusuke, Takuya Kochi y Kyoko Nozaki. "Synthesis of Allylnickel Complexes with Phosphine Sulfonate Ligands and Their Application for Olefin Polymerization without Activators". Organometallics 28, n.º 2 (26 de enero de 2009): 656–58. http://dx.doi.org/10.1021/om800781b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Noda, Shusuke, Takuya Kochi y Kyoko Nozaki. "Synthesis of Allylnickel Complexes with Phosphine Sulfonate Ligands and Their Application for Olefin Polymerization without Activators". Organometallics 28, n.º 21 (9 de noviembre de 2009): 6378. http://dx.doi.org/10.1021/om900860v.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Chang, Chun-Fang, Kenji Hamase y Makoto Tsunoda. "Analysis of Total Thiols in the Urine of a Cystathionine β-Synthase-Deficient Mouse Model of Homocystinuria Using Hydrophilic Interaction Chromatography". Molecules 25, n.º 7 (9 de abril de 2020): 1735. http://dx.doi.org/10.3390/molecules25071735.

Texto completo
Resumen
Homocysteine and related thiols (cysteine, cysteinylglycine, and glutathione) in the urine of a cystathionine β-synthase (CBS)-deficient mouse model were quantified using hydrophilic interaction chromatography with fluorescence detection. Urine samples were incubated with tris(2-carboxyethyl) phosphine to reduce disulfide bonds into thiols. After deproteinization, thiols were fluorescently derivatized with ammonium 7-fluoro-2,1,3-benzoxadiazole-4-sulfonate (SBD-F). Homocysteine, cysteine, cysteinylglycine, and glutathione in mouse urine were analyzed using an amide-type column with a mobile phase of acetonitrile/120 mM ammonium formate buffer (pH 3.0) (81:19). The developed method was well-validated. Thiol concentrations in the urine of CBS-wild type (-WT), -heterozygous (-Hetero), and -knockout (-KO) mice were quantified using the developed method. As expected, total homocysteine concentration in CBS-KO mice was significantly higher than that in CBS-WT and CBS-Hetero mice. The developed method shows promise for diagnoses in preclinical and clinical studies.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Cai, Zhengguo, Zhongliang Shen, Xiaoyuan Zhou y Richard F. Jordan. "Enhancement of Chain Growth and Chain Transfer Rates in Ethylene Polymerization by (Phosphine-sulfonate)PdMe Catalysts by Binding of B(C6F5)3 to the Sulfonate Group". ACS Catalysis 2, n.º 6 (15 de mayo de 2012): 1187–95. http://dx.doi.org/10.1021/cs300147c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Feng, Ge, Matthew P. Conley y Richard F. Jordan. "Differentiation between Chelate Ring Inversion and Aryl Rotation in a CF3-Substituted Phosphine-Sulfonate Palladium Methyl Complex". Organometallics 33, n.º 17 (21 de agosto de 2014): 4486–96. http://dx.doi.org/10.1021/om500699t.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Vacher, Antoine, Anissa Amar, Franck Camerel, Yann Molard, Camille Latouche, Thierry Roisnel, Vincent Dorcet, Abdou Boucekkine, Huriye Akdas-Kiliç y Mathieu Achard. "Modulation of emission properties of phosphine-sulfonate ligand containing copper complexes: playing with solvato-, thermo-, and mechanochromism". Dalton Transactions 48, n.º 6 (2019): 2128–34. http://dx.doi.org/10.1039/c8dt04502j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Xia, Jian, Yixin Zhang, Jianfu Zhang y Zhongbao Jian. "High-Performance Neutral Phosphine-Sulfonate Nickel(II) Catalysts for Efficient Ethylene Polymerization and Copolymerization with Polar Monomers". Organometallics 38, n.º 5 (22 de febrero de 2019): 1118–26. http://dx.doi.org/10.1021/acs.organomet.8b00916.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Mehmood, Andleeb, Xiaowei Xu, Xiaohui Kang y Yi Luo. "Origin of different chain-end microstructures in ethylene/vinyl halide copolymerization catalysed by phosphine–sulfonate palladium complexes". New Journal of Chemistry 44, n.º 39 (2020): 16941–47. http://dx.doi.org/10.1039/d0nj03350b.

Texto completo
Resumen
Ethylene and vinyl halide (VX, X = F or Cl) copolymerization mechanism in the presence of catalysts A ((POOMe,OMe)PdMe, POOMe,OMe = {2(2-MeOC6H4)(2-SO3-5-MeC6H3)P}) and A′ ((POBp,OMe)PdMe, POBp,OMe = {(2-MeOC6H4)(2-{2,6-(MeO)2C6H3}C6H4)(2-SO3-5-MeC6H3)P}) has been comparatively studied via density functional theory (DFT) calculations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Chen, Min y Changle Chen. "Rational Design of High-Performance Phosphine Sulfonate Nickel Catalysts for Ethylene Polymerization and Copolymerization with Polar Monomers". ACS Catalysis 7, n.º 2 (18 de enero de 2017): 1308–12. http://dx.doi.org/10.1021/acscatal.6b03394.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Du, Qing, Yuliang Yang, Lihua Guo, Meng Tian, Xingxing Ge, Zhenzhen Tian, Liping Zhao, Zhishan Xu, Juanjuan Li y Zhe Liu. "Fluorescent half-sandwich phosphine-sulfonate iridium(III) and ruthenium(II) complexes as potential lysosome-targeted anticancer agents". Dyes and Pigments 162 (marzo de 2019): 821–30. http://dx.doi.org/10.1016/j.dyepig.2018.11.009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Pfeiffer, Christine M., Dan L. Huff, S. Jay Smith, Dayton T. Miller y Elaine W. Gunter. "Comparison of Plasma Total Homocysteine Measurements in 14 Laboratories: An International Study". Clinical Chemistry 45, n.º 8 (1 de agosto de 1999): 1261–68. http://dx.doi.org/10.1093/clinchem/45.8.1261.

Texto completo
Resumen
Abstract Background: Information on interlaboratory variation and especially on methodological differences for plasma total homocysteine is lacking. Methods: We studied 14 laboratories that used eight different method types: HPLC with electrochemical detection (HPLC-ED); HPLC with fluorescence detection (HPLC-FD) further subdivided by type of reducing/derivatizing agent; gas chromatography/mass spectrometry (GC/MS); enzyme immunoassay (EIA); and fluorescence polarization immunoassay (FPIA). Three of these laboratories used two methods. The laboratories participated in a 2-day analysis of 46 plasma samples, 4 additional plasma samples with added homocystine, and 3 plasma quality-control (QC) pools. Results were analyzed for imprecision, recovery, and methodological differences. Results: The mean among-laboratory and among-run within-laboratory imprecision (CV) was 9.3% and 5.6% for plasma samples, 8.8% and 4.9% for samples with added homocystine, and 7.6% and 4.2% for the QC pools, respectively. Difference plots showed values systematically higher than GC/MS for HPLC-ED, HPLC-FD using sodium borohydride/monobromobimane (however, for only one laboratory), and EIA, and lower values for HPLC-FD using trialkylphosphine/4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole. The two HPLC-FD methods using tris(2-carboxyethyl) phosphine/ammonium 7-fluoro-2,1,3-benzoxadiazole-4-sulfonate (SBD-F) or tributyl phosphine/SBD-F, and the FPIA method showed no detectable systematic difference from GC/MS. Conclusions: Among-laboratory variations within one method can exceed among-method variations. Some of the methods tested could be used interchangeably, but there is an urgent need to improve analytical imprecision and to decrease differences among methods.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

García Suárez, Eduardo J., Aurora Ruiz, Sergio Castillón, Werner Oberhauser, Claudio Bianchini y Carmen Claver. "New alkyl derivatives phosphine sulfonate (P–O) ligands. Catalytic activity in Pd-catalysed Suzuki–Miyaura reactions in water". Dalton Trans., n.º 27 (2007): 2859–61. http://dx.doi.org/10.1039/b707590c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Zong, Yanlin, Chaoqun Wang, Yixin Zhang y Zhongbao Jian. "Polar-Functionalized Polyethylenes Enabled by Palladium-Catalyzed Copolymerization of Ethylene and Butadiene/Bio-Based Alcohol-Derived Monomers". Polymers 15, n.º 4 (19 de febrero de 2023): 1044. http://dx.doi.org/10.3390/polym15041044.

Texto completo
Resumen
Polar-functionalized polyolefins are high-value materials with improved properties. However, their feedstocks generally come from non-renewable fossil products; thus, it requires the development of renewable bio-based monomers to produce functionalized polyolefins. In this contribution, via the Pd-catalyzed telomerization of 1,3-butadiene and three types of bio-based alcohols (furfuryl alcohol, tetrahydrofurfuryl alcohol, and solketal), 2,7-octadienyl ether monomers including OC8-FUR, OC8-THF, and OC8-SOL were synthesized and characterized, respectively. The copolymerization of these monomers with ethylene catalyzed by phosphine–sulfonate palladium catalysts was further investigated. Microstructures of the resultant copolymers were analyzed by NMR and ATR-IR spectroscopy, revealing linear structures with incorporations of difunctionalized side chains bearing both allyl ether units and polar cyclic groups. Mechanical property studies exhibited better strain-at-break of these copolymers compared to the non-polar polyethylene, among which the copolymer E-FUR with the incorporation of 0.3 mol% displayed the highest strain-at-break and stress-at-break values of 940% and 35.9 MPa, respectively.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía