Literatura académica sobre el tema "Phase-Field Models (PFM)"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Phase-Field Models (PFM)".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Phase-Field Models (PFM)"
Li, Jingfa, Dukui Zheng y Wei Zhang. "Advances of Phase-Field Model in the Numerical Simulation of Multiphase Flows: A Review". Atmosphere 14, n.º 8 (19 de agosto de 2023): 1311. http://dx.doi.org/10.3390/atmos14081311.
Texto completoSidharth, P. C. y B. N. Rao. "A Review on phase-field modeling of fracture". Proceedings of the 12th Structural Engineering Convention, SEC 2022: Themes 1-2 1, n.º 1 (19 de diciembre de 2022): 449–56. http://dx.doi.org/10.38208/acp.v1.534.
Texto completoChen, Ming, Xiao Dong Hu y Dong Ying Ju. "Phase-Field Simulation of Binary Alloy Crystal Growth Prepared by a Fluid Flow". Materials Science Forum 833 (noviembre de 2015): 11–14. http://dx.doi.org/10.4028/www.scientific.net/msf.833.11.
Texto completoKarim, Eaman T., Miao He, Ahmed Salhoumi, Leonid V. Zhigilei y Peter K. Galenko. "Kinetics of solid–liquid interface motion in molecular dynamics and phase-field models: crystallization of chromium and silicon". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, n.º 2205 (19 de julio de 2021): 20200320. http://dx.doi.org/10.1098/rsta.2020.0320.
Texto completoJeon, Seoyeon y Hyunjoo Choi. "Trends in Materials Modeling and Computation for Metal Additive Manufacturing". journal of Korean Powder Metallurgy Institute 31, n.º 3 (30 de junio de 2024): 213–19. http://dx.doi.org/10.4150/jpm.2024.00150.
Texto completoDeng, Jinghui, Jie Zhou, Tangzhen Wu, Zhengliang Liu y Zhen Wu. "Review and Assessment of Fatigue Delamination Damage of Laminated Composite Structures". Materials 16, n.º 24 (16 de diciembre de 2023): 7677. http://dx.doi.org/10.3390/ma16247677.
Texto completoLi, Chang, Shuchao Li, Jiabo Liu, Yichang Sun, Yuhao Wang y Fanhong Kong. "Study on Mechanism of Microstructure Refinement by Ultrasonic Cavitation Effect". Coatings 14, n.º 11 (17 de noviembre de 2024): 1462. http://dx.doi.org/10.3390/coatings14111462.
Texto completoZhang, Shidong, Kai Wang, Shangzhe Yu, Nicolas Kruse, Roland Peters, Felix Kunz y Rudiger-A. Eichel. "Multiscale and Multiphysical Numerical Simulations of Solid Oxide Cell (SOC)". ECS Meeting Abstracts MA2023-01, n.º 54 (28 de agosto de 2023): 144. http://dx.doi.org/10.1149/ma2023-0154144mtgabs.
Texto completoSteinberg, A. B., F. Maucher, S. V. Gurevich y U. Thiele. "Exploring bifurcations in Bose–Einstein condensates via phase field crystal models". Chaos: An Interdisciplinary Journal of Nonlinear Science 32, n.º 11 (noviembre de 2022): 113112. http://dx.doi.org/10.1063/5.0101401.
Texto completoYoon, Sungha, Darae Jeong, Chaeyoung Lee, Hyundong Kim, Sangkwon Kim, Hyun Geun Lee y Junseok Kim. "Fourier-Spectral Method for the Phase-Field Equations". Mathematics 8, n.º 8 (18 de agosto de 2020): 1385. http://dx.doi.org/10.3390/math8081385.
Texto completoTesis sobre el tema "Phase-Field Models (PFM)"
Noel, Matthieu. "Modélisation déterministe et probabiliste de la rupture par champ de phase et identification expérimentale pour la fissuration des structures en bois dans l’ameublement". Electronic Thesis or Diss., Université Gustave Eiffel, 2024. http://www.theses.fr/2024UEFL2061.
Texto completoIn the furniture industry, ensuring the safety of structures in accordance with European standards presents a significant challenge for furniture manufacturers. Before commercialization, furniture are subjected to standardized validation tests, which only allow for a retrospective understanding of its mechanical behavior. This thesis aims to develop modeling and numerical simulation tools to predict the cracking failure mechanism at the connections between furniture elements. To achieve this objective, the methodological approach combines modeling and numerical simulation with experimental testing. It employs the finite element method coupled with phase-field fracture/damage models to simulate cracking in linear elastic isotropic and anisotropic materials within a deterministic and probabilistic framework. An experimental testing campaign is conducted on perforated spruce wood samples subjected to uniaxial compression to reproduce the cracking mechanisms observed in real structures, particularly in the connections of high loft beds. An identification procedure is developed and implemented to characterize the elastic and damage properties of spruce wood, in particular by exploiting experimental displacement field measurements obtained through digital image correlation. A method for accelerating phase-field damage simulations is proposed to reduce their high computational cost. This approach allows for the prediction, independently of the type of connections, of the displacement or critical force preceding crack initiation. The numerical results indicate that, provided realistic boundary conditions are applied and the material properties are correctly identified, the crack initiation criterion is useful for predicting the location of potentially damaged/cracked areas and providing a consistent order of magnitude of the force or displacement required to initiate cracking. This criterion only requires a single linear elastic simulation, followed by a post-processing with a phase-field damage model, to facilitate its use in an industrial context, in particular the furniture sector. The numerical tools developed, available in open source, could help furniture manufacturers to predict brittle fracture in wood and optimize furniture design, while guaranteeing compliance with safety standards
Yoon, Hyunse. "Phase-averaged stereo-PIV flow field and force/moment/motion measurements for surface combatant in PMM maneuvers". Diss., University of Iowa, 2009. https://ir.uiowa.edu/etd/453.
Texto completoBayle, Raphaël. "Simulation des mécanismes de changement de phase dans des mémoires PCM avec la méthode multi-champ de phase". Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX035.
Texto completoPhase change memories (PCM) exploit the variation of resistance of a small volume of phase change material: the binary information is coded through the amorphous or crystalline phase of the material. The phase change is induced by an electrical current, which heats the material by the Joule effect. Because of its fast and congruent crystallization, theGe2Sb2Te5 alloy is widely used for PCM. Nevertheless, to get a better reliability at high temperatures, which is required e.g. for automotive applications, STMicroelectronics uses a Ge-rich GeSbTe alloy. In this alloy, chemical segregation and appearance of a new crystalline phase occur during crystallization. The distribution of phases and alloy components are critical for the proper functioning of the memory cell; thus, predictive simulations would be extremely useful. Phase field models are used for tracking interfaces between areas occupied by different phases. In this work, a multi-phase field model allowing simulating the distribution of phases and species in Ge-rich GeSbTe has been developed. The parameters of the model have been determined using available data on this alloy. Two types of simulations have been carried out, firstly to describe crystallization during annealing of initially amorphous deposited thin layer; secondly to follow the evolution of phase distribution during memory operation using temperature fields that are typical for those operations. Comparisons between simulations and experiments show that they both exhibit the same features
Kozubík, Lukáš. "Návrh a optimalizace tlumiče teplotních fluktuací využívající latentní teplo fázové přeměny". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-392834.
Texto completoCapítulos de libros sobre el tema "Phase-Field Models (PFM)"
Bulatov, Vasily y Wei Cai. "Phase Field Method". En Computer Simulations of Dislocations. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780198526148.003.0016.
Texto completoXie, Guizhong, Hangqi Jia, Liangwen Wang, Wenliao Du, Yunqiao Dong, Yudong Zhong, Chongmao Zhao, Beibei Fu y Shuaiqiang Xu. "Prediction of Remaining Life of Structure Based on Phase-Field Method". En Advances in Transdisciplinary Engineering. IOS Press, 2023. http://dx.doi.org/10.3233/atde230143.
Texto completoActas de conferencias sobre el tema "Phase-Field Models (PFM)"
Kawaguchi, Munemichi. "Phase-Field Model for Recrystallization of Impurities in Sodium Coolant". En 2021 28th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/icone28-65721.
Texto completoDibua, Obehi G., Anil Yuksel, Nilabh K. Roy, Chee S. Foong y Michael Cullinan. "Nanoparticle Sintering Model, Simulation and Calibration Against Experimental Data". En ASME 2018 13th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/msec2018-6383.
Texto completoGrose, Joshua, Obehi G. Dibua, Dipankar Behera, Chee S. Foong y Michael Cullinan. "Simulation and Characterization of Nanoparticle Thermal Conductivity for a Microscale Selective Laser Sintering System". En ASME 2021 16th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/msec2021-64048.
Texto completoTakada, Naoki, Masaki Misawa y Akio Tomiyama. "A Phase-Field Method for Interface-Tracking Simulation of Two-Phase Flows". En ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77367.
Texto completoTakada, Naoki y Akio Tomiyama. "Interface-Tracking Simulation of Two-Phase Flows by Phase-Field Method". En ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98536.
Texto completoMIN, Kyung Mun. "Computational thermo-mechanical process design by integrating crystal plasticity and phase field model". En Material Forming. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903131-242.
Texto completoTakada, Naoki. "Application of Interface-Tracking Method Based on Phase-Field Model to Numerical Analysis of Isothermal and Thermal Two-Phase Flows". En ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37567.
Texto completoToloui, Morteza y Matthias Militzer. "Phase Field Modelling of Microstructure Evolution in the HAZ of X80 Linepipe Steel". En 2012 9th International Pipeline Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ipc2012-90378.
Texto completoAbubakar, Abba A., Khaled S. Al-Athel y Syed S. Akhtar. "Computational Modeling of Extreme Particles Deformation and Grain Refinement During Cold Spray Deposition". En ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-112993.
Texto completoSahoo, Seshadev y Kevin Chou. "Review on Phase-Field Modeling of Microstructure Evolutions: Application to Electron Beam Additive Manufacturing". En ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/msec2014-3901.
Texto completoInformes sobre el tema "Phase-Field Models (PFM)"
Allen, Jeffrey, Robert Moser, Zackery McClelland, Md Mohaiminul Islam y Ling Liu. Phase-field modeling of nonequilibrium solidification processes in additive manufacturing. Engineer Research and Development Center (U.S.), diciembre de 2021. http://dx.doi.org/10.21079/11681/42605.
Texto completo