Literatura académica sobre el tema "Phase diagram of gold"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Phase diagram of gold".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Phase diagram of gold"
Zhuang, Dian Xiang, Ming Xie, Lin Jing Liu, Man Men Liu, Yong Tai Chen, Ji Ming Zhang, You Cai Yang, Jie Qiong Hu, Sai Bei Wang y Song Wang. "Recent Research on Ternary Phase Diagram of Gold Alloy". Advanced Materials Research 834-836 (octubre de 2013): 323–29. http://dx.doi.org/10.4028/www.scientific.net/amr.834-836.323.
Texto completoSaccone, A., D. Macciò, S. Delfino y R. Ferro. "The neodymium-gold phase diagram". Metallurgical and Materials Transactions A 30, n.º 5 (mayo de 1999): 1169–76. http://dx.doi.org/10.1007/s11661-999-0266-7.
Texto completoXiao-Jun, Liu, Moritomo Yutaka y Kojima Norimichi. "Electronic Phase Diagram of Mixed-Valence Gold Chloride". Chinese Physics Letters 21, n.º 1 (enero de 2004): 183–86. http://dx.doi.org/10.1088/0256-307x/21/1/055.
Texto completoSaccone, A., D. Macciò, S. Delfino y R. Ferro. "The phase diagram of the terbium–gold alloy system". Intermetallics 8, n.º 3 (marzo de 2000): 229–37. http://dx.doi.org/10.1016/s0966-9795(99)00099-0.
Texto completoRyu, Seunghwa y Wei Cai. "A gold–silicon potential fitted to the binary phase diagram". Journal of Physics: Condensed Matter 22, n.º 5 (15 de enero de 2010): 055401. http://dx.doi.org/10.1088/0953-8984/22/5/055401.
Texto completoFAROOQ, M. y FARID A. KHWAJA. "MONTE CARLO CALCULATION OF ORDER-DISORDER PHASE DIAGRAM OF CU-AU". International Journal of Modern Physics B 07, n.º 08 (abril de 1993): 1731–43. http://dx.doi.org/10.1142/s0217979293002547.
Texto completoLöfgren, Joakim, Henrik Grönbeck, Kasper Moth-Poulsen y Paul Erhart. "Understanding the Phase Diagram of Self-Assembled Monolayers of Alkanethiolates on Gold". Journal of Physical Chemistry C 120, n.º 22 (24 de mayo de 2016): 12059–67. http://dx.doi.org/10.1021/acs.jpcc.6b03283.
Texto completoLu, S., N. Yao y I. A. Aksay. "Chemical Compostion Analysis on Sintered Gold and Platinum Nanoparticles". Microscopy and Microanalysis 6, S2 (agosto de 2000): 28–29. http://dx.doi.org/10.1017/s1431927600032633.
Texto completoGuisbiers, Grégory, Sergio Mejia-Rosales, Subarna Khanal, Francisco Ruiz-Zepeda, Robert L. Whetten y Miguel José-Yacaman. "Gold–Copper Nano-Alloy, “Tumbaga”, in the Era of Nano: Phase Diagram and Segregation". Nano Letters 14, n.º 11 (27 de octubre de 2014): 6718–26. http://dx.doi.org/10.1021/nl503584q.
Texto completoWang, Yuanwei, Yu Tanabe y Hiromasa Yagyu. "Analysis of Synthesis Mechanism of Gold Nanoparticles Using Glass Microfluidics". Proceedings 2, n.º 13 (3 de diciembre de 2018): 702. http://dx.doi.org/10.3390/proceedings2130702.
Texto completoTesis sobre el tema "Phase diagram of gold"
Butt, M. Taqi Zahid. "Study of gold-based alloy phase diagrams". Thesis, Brunel University, 1990. http://bura.brunel.ac.uk/handle/2438/7389.
Texto completoWu, Yang. "Azimuthal anisotropy in gold-gold collisions at 4.5 GeV center-of-mass energy per nucleon pair using fixed-target mode at the Relativistic Heavy-Ion Collider". Kent State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=kent1562355001935965.
Texto completoHajiw, Stéphanie. "Des interactions entre nanoparticules d’or hydrophobes à leur auto-assemblage". Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS080/document.
Texto completoAs many colloids, metallic nanoparticles grafted with hydrophobic ligands self-assemble above a volume fraction threshold and thus build superlattices. These model systems, which are widely studied when suspended in volatile oils, enable a better understanding of soft spheres self-assembly.Interactions which lead to self-assembly are commonly described by the combination of van der Waals attraction with interaction between the ligand shells. The shell behavior is controlled by the ligand affinity with the solvent. An effect of the solvent on the self-assembly of nanoparticles has already been observed. Using a small angle X-ray scattering, I measured, through the structure factor, the interactions between gold nanoparticles grafted with alkanethiols in different oils, at various concentrations, for different lengths of ligands and core diameters. I noticed an attractive interaction when using flexible linear alkanes as solvent. It has also been shown that the attraction intensity increases with the solvent length.In order to correlate the interactions between particles to their phase diagram, I studied the crystallization process by concentrating nanoparticles using evaporation in capillaries or Ostwald ripening in emulsions. I showed that attractive interactions induced by the solvent lead to superlattices formation at very low volume fractions.At high concentrations, the superlattice structure depends on the ratio of the ligand length over the gold core diameter. For a ratio around 0.7, the final structure observed is body centered cubic, whereas at lower concentration, it is face centered cubic. When this ratio is halved, an unexpected structure is observed. It is a hexagonal structure with a large lattice parameter. It has been analyzed as a Frank and Kasper’s phase named MgZn2 or C14. It is the first time that this topologically close-packed structure is observed for monodisperse soft spheres. The existence of this phase and the role of the ratio R have been interpreted by considering quantitatively the competition between ligands entropy and the strong van der Waals attraction
Richard, Pauline. "Exploration ab initio du diagramme de phases de l'or à haute pression et haute température". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASF040.
Texto completoThis thesis is dedicated to exploring the phase diagram of gold under high pressure and high temperature. Calculating the free energy is fundamental for comparing the relative stability of phases under specific thermodynamic conditions. However, this quantity explicitly depends on the partition function, making it challenging to calculate in atomistic simulations. It is often decomposed into cold and thermal contributions. Among these contributions, the lattice dynamics, or phonons, play a crucial role. The temperatures explored induce indeed anharmonic effects, necessitating the use of expensive ab initio methods, based on density functional theory (DFT) which are the most appropriate method to account for these effects that existing empirical potentials cannot reproduce. Coupled with thermodynamic integration, it is the reference method for calculating free energy. However, this method remains very time-consuming and is thus prohibitive to explore the whole phase diagram of gold. Alternative methods exist, such as the quasi-harmonic approximation, but its validity at high temperature is difficult to assess. The goal of this thesis is to propose a method that maintains DFT accuracy while reducing computation time. To achieve this, an accelerated sampling procedure using machine learning is employed. This procedure allows for the training of surrogate potentials, which are then used a posteriori to extract the Gibbs free energies of the considered structures via a non-equilibrium thermodynamic integration calculation. The results obtained have been validated by comparison with those from the temperature-dependent effective potential. In the first part, this approach was applied to construct the phase diagram of solid gold from 0 to 1 TPa and up to 10,000 K. It shows the stabilization of a body-centered cubic (bcc) phase at high temperatures, around 200 GPa. An explanation for the cubic face-centered (fcc)-bcc transition before melting was proposed, based on the effects of interatomic force constants. Furthermore, the stability domains of the fcc and hexagonal close-packed (hcp) phases predicted by this study are in good agreement with most recent experimental results. In the second part, this procedure was extended to calculate the melting curve of gold
Park, Heung-Shik. "Self-assembly of lyotropic chromonic liquid crystals: Effects of additives and applications". Kent State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=kent1291043533.
Texto completoFallas, Chinchilla Juan Carlos. "Pressure-temperature phase diagram of LiA1H₄". abstract and full text PDF (UNR users only), 2009. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1464434.
Texto completoAzevedo, Cesar R. de Farias. "Phase diagram and phase transformations in Ti-Al-Si system". Thesis, Imperial College London, 1996. http://hdl.handle.net/10044/1/1278.
Texto completoPrins, Sara Natalia. "The AI-Pt-Ru ternary phase diagram". Diss., Pretoria : [s.n.], 2003. http://upetd.up.ac.za/thesis/available/etd-09192005-163724/.
Texto completoAttwood, Brian Christopher. "Global phase diagram for monomer/dimer mixtures". NCSU, 2001. http://www.lib.ncsu.edu/theses/available/etd-20011012-113555.
Texto completoThe objective of this thesis is to calculate the global phase diagram predicted by the Generalized Flory Dimer equation of state for mixtures of square-well monomers and dimers. Towards that goal, we first extend the Generalized Flory Dimer (GFD) theory for hard sphere monomer/dimer mixtures to square-well monomer/dimer mixtures. Theoretical predictions for the compressibility factor as a function of volume fraction are compared to discontinuous molecular dynamic simulation results on monomer/dimer mixtures at well depth ratios 0.5 - 1.5 and dimer mole fractions 0.111 - 0.667 and on monomers/8-mer mixtures at well depth ratios 0.5 - 1.5. Agreement is found generally to be good and consistent with the agreement obtained when the GFD theory is applied to other square-well systems. Next we calculate the GFD predicted global phase diagram for square-well monomer/dimer mixtures using a brute force method. The locus of critical points in the direction implies that monomer/dimer systems have a greater tendency towards liquid-liquid immiscibility in our system than in monomer/monomer systems.
Huang, Gang 1971. "Phase diagram for liquid crystalline polymerpolycarbonate blends". Thesis, McGill University, 2001. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33973.
Texto completoLibros sobre el tema "Phase diagram of gold"
Prince, Alan. Phase diagrams of ternary gold alloys. London: Institute of Metals, 1990.
Buscar texto completoH, Okamoto, Massalski T. B y ASM International, eds. Phase diagrams of binary gold alloys. Metals Park, Ohio: ASM International, 1987.
Buscar texto completoButt, M. Taqi Zahid. Study of gold-based alloy phase diagrams. Uxbridge: Brunel University, 1990.
Buscar texto completo-C, Zhao J., ed. Methods for phase diagram determination. Amsterdam: Elsevier, 2007.
Buscar texto completoR, Knabe y United States. National Aeronautics and Space Administration., eds. Electrical conductivity and phase diagram of binary alloys. Washington DC: National Aeronautics and Space Administration, 1985.
Buscar texto completoMitaku, Shigeki y Ryusuke Sawada. Evolution Seen from the Phase Diagram of Life. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0060-8.
Texto completoS, Pierce Brenda y Johnson M. F. 1949-, eds. TRIANGL: A ternary diagram program on the PRIME computer. [Reston, VA]: U.S. Geological Survey, 1986.
Buscar texto completoE, Morral J., Schiffman R. S, Merchant S. M y ASM International. Thermodynamics and Phase Equilibria Committee., eds. Experimental methods of phase diagram determination: Proceedings of a symposium. Warrendale, PA: Minerals, Metals & Materials Society, 1994.
Buscar texto completoLu, Xingye. Phase Diagram and Magnetic Excitations of BaFe2-xNixAs2: A Neutron Scattering Study. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4998-9.
Texto completoKim, Chanul. Predicting the temperature-strain phase diagram of VO$_2$ from first principles. [New York, N.Y.?]: [publisher not identified], 2018.
Buscar texto completoCapítulos de libros sobre el tema "Phase diagram of gold"
Weik, Martin H. "phase diagram". En Computer Science and Communications Dictionary, 1258. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_13898.
Texto completoPeeters, Francois M. "The Phase Diagram". En Physics and Chemistry of Materials with Low-Dimensional Structures, 17–32. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-1286-2_2.
Texto completoSuryanarayana, C. y M. Grant Norton. "Phase Diagram Determination". En X-Ray Diffraction, 167–92. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-0148-4_7.
Texto completoZuyao, Xu y Liu Guoquan. "Alloy Phase Diagram". En The ECPH Encyclopedia of Mining and Metallurgy, 24–37. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-2086-0_416.
Texto completoZuyao, Xu, Liu Guoquan y Xu Kuangdi. "Alloy Phase Diagram". En The ECPH Encyclopedia of Mining and Metallurgy, 1–14. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-0740-1_416-1.
Texto completoShamsuddin, Mohammad. "Phase Diagram Analyses". En The Minerals, Metals & Materials Series, 215–25. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-47118-6_8.
Texto completoStrauch, D. "Si: phase diagram, phase transition". En New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors, 638–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14148-5_357.
Texto completoTatami, Junichi. "Phase Equilibrium and Phase Diagram". En Materials Chemistry of Ceramics, 23–43. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9935-0_2.
Texto completoSatz, Helmut. "The QCD Phase Diagram". En Extreme States of Matter in Strong Interaction Physics, 111–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23908-3_7.
Texto completoLink, Albert N. y John T. Scott. "Ceramic Phase Diagram Program". En Public Accountability, 81–90. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5639-8_9.
Texto completoActas de conferencias sobre el tema "Phase diagram of gold"
Lemke, Kono. "Phase diagrams of gold-sulfur nanoclusters using atomistic simulations: shape, size and temperature effects". En Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.6830.
Texto completoLemke, Kono. "Thermodynamics of Gold-Sulphide Clusters in Ore Vapors: Exploring Phase Diagrams of AumSnHx Nanoclusters Using Atomistic Simulations". En Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.1456.
Texto completoZECEVIC, MILENA, DUSKO MINIC y ALEKSANDAR DJORDJEVIC. "EXPERIMENTAL INVESTIGATION OF THE TERNARY – NICKEL BASED ALLOYS". En IRASA International Scientific Conference, 132–45. IRASA – International Research Academy of Science and Art, 2024. https://doi.org/10.62982/seti06.mipr.09.
Texto completoToh, Chin Hock, Arun Raman, Thomas Fitzgerald, Madhuri Narkhede, Alfred A. La Mar y Dennis Prem Kumar Chandran. "Effects of Thermal Lids Gold Plating Thickness on Thermal Interface Reliability for Flip Chip Packaging". En ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ipack2007-33505.
Texto completoKorniyenko, Kostyantyn y Lyudmila Kriklya. "Temperature–Composition Sections of the Hf–Rh–Ir System". En IXth INTERNATIONAL SAMSONOV CONFERENCE “MATERIALS SCIENCE OF REFRACTORY COMPOUNDS”. Frantsevich Ukrainian Materials Research Society, 2024. http://dx.doi.org/10.62564/m4-kk5542.
Texto completoIsmail, Muhammad Hami Asmai y Dmitry Tailakov. "Identification of Objects in Oilfield Infrastructure Using Engineering Diagram and Machine Learning Methods". En International Petroleum Technology Conference. IPTC, 2022. http://dx.doi.org/10.2523/iptc-22467-ea.
Texto completoRibeiro Machado da Silva, Vinicius, Matheus Costa dos Santos y Mario Alfredo Vignoles. "Lean Global Analysis of Marine Slender Structures With Machine Learning". En ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-95147.
Texto completoWartenberg, Nicolas, Dylan Blaizot, Matthieu Mascle, Aurélie Mouret y David Rousseau. "Towards More Representative Workflows for Designing Robust Surfactant EOR Formulations". En SPE Improved Oil Recovery Conference. SPE, 2022. http://dx.doi.org/10.2118/209361-ms.
Texto completoLolla, Tapasvi, John Siefert, Geoff West y Mike Gagliano. "A Study of Sigma Phase Evolution in Long-Term Creep Tested Super 304H Samples". En AM-EPRI 2019, editado por J. Shingledecker y M. Takeyama. ASM International, 2019. http://dx.doi.org/10.31399/asm.cp.am-epri-2019p0726.
Texto completoFu, Kang y Pei-Feng Hsu. "A Novel Periodic Boundary Condition Treatment in Electrodynamics Wave Interaction With Small Structures". En ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42273.
Texto completoInformes sobre el tema "Phase diagram of gold"
Edgar, Alexander Steven, Justine H. Yang y Dali Yang. Nitroplasticizer-water phase diagram. Office of Scientific and Technical Information (OSTI), octubre de 2018. http://dx.doi.org/10.2172/1477598.
Texto completoZhang, J. M., W. W. Chen, B. Dunn y A. J. Ardell. Phase Diagram Studies of ZnS Systems. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1988. http://dx.doi.org/10.21236/ada198983.
Texto completoBurakovsky, Leonid, Samuel Baty y Dean Preston. Ab Initio Phase Diagram of Tungsten. Office of Scientific and Technical Information (OSTI), diciembre de 2020. http://dx.doi.org/10.2172/1739915.
Texto completoAnagnostopoulos, K. N., M. J. Bowick y S. M. Catterall. The phase diagram of crystalline surfaces. Office of Scientific and Technical Information (OSTI), septiembre de 1995. http://dx.doi.org/10.2172/176799.
Texto completoRoss, M. Phase diagram of Mo at high pressure and temperature. Office of Scientific and Technical Information (OSTI), octubre de 2008. http://dx.doi.org/10.2172/945864.
Texto completoTarko, Andrew P., Jose Thomaz y Mario Romero. Developing the Collision Diagram Builder: Phase II Corridor Edition. Purdue University, 2019. http://dx.doi.org/10.5703/1288284317107.
Texto completoFlint, Rebecca. Exotic Kondo Phases: the non-Kramers Doniach phase diagram. Office of Scientific and Technical Information (OSTI), octubre de 2021. http://dx.doi.org/10.2172/1825936.
Texto completoBurakovsky, Leonid, Shao-Ping Chen, Dean L. Preston y Daniel G. Sheppard. IC W13_auptphase Highlight: Phase Diagram of Pt from Z Methodology. Office of Scientific and Technical Information (OSTI), abril de 2014. http://dx.doi.org/10.2172/1127486.
Texto completoBurakovsky, Leonid y Dean Laverne Preston. IC W_molybdenum Highlight: Ab Initio Studies on the Phase Diagram of Mo. Office of Scientific and Technical Information (OSTI), diciembre de 2016. http://dx.doi.org/10.2172/1337065.
Texto completoWestfall, Gary. Study of the QCD Phase Diagram using STAR at RHIC - Final Report. Office of Scientific and Technical Information (OSTI), enero de 2017. http://dx.doi.org/10.2172/1339943.
Texto completo