Artículos de revistas sobre el tema "Phase change memory GST"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Phase change memory GST".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
S. A.Aziz, M., F. H. M.Fauzi, Z. Mohamad y R. I. Alip. "The Effect of Channel Length on Phase Transition of Phase Change Memory". International Journal of Engineering & Technology 7, n.º 3.11 (21 de julio de 2018): 25. http://dx.doi.org/10.14419/ijet.v7i3.11.15923.
Texto completoGolovchak, R., Y. G. Choi, S. Kozyukhin, Yu Chigirinsky, A. Kovalskiy, P. Xiong-Skiba, J. Trimble, R. Pafchek y H. Jain. "Oxygen incorporation into GST phase-change memory matrix". Applied Surface Science 332 (marzo de 2015): 533–41. http://dx.doi.org/10.1016/j.apsusc.2015.01.203.
Texto completoBehrens, Mario, Andriy Lotnyk, Hagen Bryja, Jürgen W. Gerlach y Bernd Rauschenbach. "Structural Transitions in Ge2Sb2Te5 Phase Change Memory Thin Films Induced by Nanosecond UV Optical Pulses". Materials 13, n.º 9 (1 de mayo de 2020): 2082. http://dx.doi.org/10.3390/ma13092082.
Texto completoStern, Keren, Yair Keller, Christopher M. Neumann, Eric Pop y Eilam Yalon. "Temperature-dependent thermal resistance of phase change memory". Applied Physics Letters 120, n.º 11 (14 de marzo de 2022): 113501. http://dx.doi.org/10.1063/5.0081016.
Texto completoKim, Sung Soon, Jun Hyun Bae, Woo Hyuck Do, Kyun Ho Lee, Young Tae Kim, Young Kwan Park, Jeong Taek Kong y Hong Lim Lee. "Thermal Stress Model for Phase Change Random Access Memory". Solid State Phenomena 124-126 (junio de 2007): 37–40. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.37.
Texto completoRaeis-Hosseini, Niloufar y Junsuk Rho. "Dual-Functional Nanoscale Devices Using Phase-Change Materials: A Reconfigurable Perfect Absorber with Nonvolatile Resistance-Change Memory Characteristics". Applied Sciences 9, n.º 3 (8 de febrero de 2019): 564. http://dx.doi.org/10.3390/app9030564.
Texto completoAgarwal, Satish C. "Role of potential fluctuations in phase-change GST memory devices". physica status solidi (b) 249, n.º 10 (17 de agosto de 2012): 1956–61. http://dx.doi.org/10.1002/pssb.201200362.
Texto completoXue, Yuan, Sannian Song, Xiaogang Chen, Shuai Yan, Shilong Lv, Tianjiao Xin y Zhitang Song. "Enhanced performance of phase change memory by grain size reduction". Journal of Materials Chemistry C 10, n.º 9 (2022): 3585–92. http://dx.doi.org/10.1039/d1tc06045g.
Texto completoPacco, Antoine, Ju-Geng Lai, Pallavi Puttarame Gowda, Hanne De Coster, Jens Rip, Kurt Wostyn y Efrain Altamirano Sanchez. "Wet Chemical Recess Etching of Ge2Sb2Te5 for 3D PCRAM Memory Applications". ECS Meeting Abstracts MA2022-01, n.º 28 (7 de julio de 2022): 1262. http://dx.doi.org/10.1149/ma2022-01281262mtgabs.
Texto completoYin, You y Sumio Hosaka. "Crystal Growth Suppression by N-Doping into Chalcogenide for Application to Next-Generation Phase Change Memory". Key Engineering Materials 497 (diciembre de 2011): 101–5. http://dx.doi.org/10.4028/www.scientific.net/kem.497.101.
Texto completoRen, W., M. Zhong, J. Dai, P. Mukundhan y M. Zhang. "Phase change memory alloys: GST cell array characterization using picosecond ultrasonics". Microelectronic Engineering 88, n.º 5 (mayo de 2011): 822–26. http://dx.doi.org/10.1016/j.mee.2010.07.016.
Texto completoZhu, Yueqin, Zhonghua Zhang, Sannian Song, Huaqing Xie, Zhitang Song, Xiaoyun Li, Lanlan Shen, Le Li, Liangcai Wu y Bo Liu. "Ni-doped GST materials for high speed phase change memory applications". Materials Research Bulletin 64 (abril de 2015): 333–36. http://dx.doi.org/10.1016/j.materresbull.2015.01.016.
Texto completoPan, Yuanchun, Zhen Li y Zhonglu Guo. "Lattice Thermal Conductivity of mGeTe•nSb2Te3 Phase-Change Materials: A First-Principles Study". Crystals 9, n.º 3 (7 de marzo de 2019): 136. http://dx.doi.org/10.3390/cryst9030136.
Texto completoWang, Miao, Yegang Lu, Xiang Shen, Guoxiang Wang, Jun Li, Shixun Dai, Sannian Song y Zhitang Song. "Effect of Sb2Se on phase change characteristics of Ge2Sb2Te5". CrystEngComm 17, n.º 26 (2015): 4871–76. http://dx.doi.org/10.1039/c5ce00656b.
Texto completoKim, JunHo y Ki-Bong Song. "Simulation Study on Heat Conduction of a Nanoscale Phase-Change Random Access Memory Cell". Journal of Nanoscience and Nanotechnology 6, n.º 11 (1 de noviembre de 2006): 3474–78. http://dx.doi.org/10.1166/jnn.2006.17963.
Texto completoLei, Xin-Qing, Jia-He Zhu, Da-Wei Wang y Wen-Sheng Zhao. "Design for Ultrahigh-Density Vertical Phase Change Memory: Proposal and Numerical Investigation". Electronics 11, n.º 12 (8 de junio de 2022): 1822. http://dx.doi.org/10.3390/electronics11121822.
Texto completoBartlett, Philip N., Sophie L. Benjamin, C. H. (Kees) de Groot, Andrew L. Hector, Ruomeng Huang, Andrew Jolleys, Gabriela P. Kissling et al. "Non-aqueous electrodeposition of functional semiconducting metal chalcogenides: Ge2Sb2Te5 phase change memory". Materials Horizons 2, n.º 4 (2015): 420–26. http://dx.doi.org/10.1039/c5mh00030k.
Texto completoLIAO, YUANBAO, JIAJIA WU, LING XU, FEI YANG, WENQING LIU, JUN XU, LIANGCAI WU, ZHONGYUAN MA y KUNJI CHEN. "FORMATION, STRUCTURE AND PROPERTIES OF HIGHLY ORDERED SUB-30-nm PHASE CHANGE MATERIALS (GST) NANOPARTICLE ARRAYS". Surface Review and Letters 17, n.º 04 (agosto de 2010): 405–10. http://dx.doi.org/10.1142/s0218625x10014259.
Texto completoMakino, Kotaro, Kosaku Kato, Yuta Saito, Paul Fons, Alexander V. Kolobov, Junji Tominaga, Takashi Nakano y Makoto Nakajima. "Terahertz spectroscopic characterization of Ge2Sb2Te5 phase change materials for photonics applications". Journal of Materials Chemistry C 7, n.º 27 (2019): 8209–15. http://dx.doi.org/10.1039/c9tc01456j.
Texto completoSun, Zhi Mei, Yuan Chun Pan, Bai Sheng Sa y Jian Zhou. "Ab Initio Study on Hexagonal Ge2Sb2Te5-A Phase-Change Material for Nonvolatile Memories". Materials Science Forum 687 (junio de 2011): 7–11. http://dx.doi.org/10.4028/www.scientific.net/msf.687.7.
Texto completoLiu, Cheng, Yonghui Zheng, Tianjiao Xin, Yunzhe Zheng, Rui Wang y Yan Cheng. "The Relationship between Electron Transport and Microstructure in Ge2Sb2Te5 Alloy". Nanomaterials 13, n.º 3 (31 de enero de 2023): 582. http://dx.doi.org/10.3390/nano13030582.
Texto completoGuo, Pengfei, Andrew Sarangan y Imad Agha. "A Review of Germanium-Antimony-Telluride Phase Change Materials for Non-Volatile Memories and Optical Modulators". Applied Sciences 9, n.º 3 (4 de febrero de 2019): 530. http://dx.doi.org/10.3390/app9030530.
Texto completoKang, Shinyoung, Juyoung Lee, Myounggon Kang y Yunheub Song. "Achievement of Gradual Conductance Characteristics Based on Interfacial Phase-Change Memory for Artificial Synapse Applications". Electronics 9, n.º 8 (7 de agosto de 2020): 1268. http://dx.doi.org/10.3390/electronics9081268.
Texto completoAlip, Rosalena Irma, Ryota Kobayashi, Yu Long Zhang, Zulfakri bin Mohamad, You Yin y Sumio Hosaka. "A Novel Phase Change Memory with a Separate Heater Characterized by Constant Resistance for Multilevel Storage". Key Engineering Materials 534 (enero de 2013): 136–40. http://dx.doi.org/10.4028/www.scientific.net/kem.534.136.
Texto completoKim, Yewon, Byeol Han, Yu-Jin Kim, Jeeyoon Shin, Seongyoon Kim, Romel Hidayat, Jae-Min Park, Wonyong Koh y Won-Jun Lee. "Atomic layer deposition and tellurization of Ge–Sb film for phase-change memory applications". RSC Advances 9, n.º 30 (2019): 17291–98. http://dx.doi.org/10.1039/c9ra02188d.
Texto completoQiao, Yang, Jin Zhao, Haodong Sun, Zhitang Song, Yuan Xue, Jiao Li y Sannian Song. "Pt Modified Sb2Te3 Alloy Ensuring High−Performance Phase Change Memory". Nanomaterials 12, n.º 12 (10 de junio de 2022): 1996. http://dx.doi.org/10.3390/nano12121996.
Texto completoChao, Der-Sheng, Yi-Chan Chen, Fred Chen, Ming-Jung Chen, Philip H. Yen, Chain-Ming Lee, Wei-Su Chen, Chenhsin Lien, Ming-Jer Kao y Ming-Jinn Tsai. "Enhanced Thermal Efficiency in Phase-Change Memory Cell by Double GST Thermally Confined Structure". IEEE Electron Device Letters 28, n.º 10 (octubre de 2007): 871–73. http://dx.doi.org/10.1109/led.2007.906084.
Texto completoAhn, Jun-Ku, Kyoung-Woo Park, Sung-Gi Hur, Nak-Jin Seong, Chung-Soo Kim, Jeong-Yong Lee y Soon-Gil Yoon. "Metalorganic chemical vapor deposition of non-GST chalcogenide materials for phase change memory applications". Journal of Materials Chemistry 20, n.º 9 (2010): 1751. http://dx.doi.org/10.1039/b922398c.
Texto completoSourav, Swapnil, Amit Krishna Dwivedi y Aminul Islam. "Investigating Phase Transform Behavior in Indium Selenide Based RAM and Its Validation as a Memory Element". Journal of Materials 2016 (22 de septiembre de 2016): 1–7. http://dx.doi.org/10.1155/2016/6123268.
Texto completoAntolini, Alessio, Eleonora Franchi Scarselli, Antonio Gnudi, Marcella Carissimi, Marco Pasotti, Paolo Romele y Roberto Canegallo. "Characterization and Programming Algorithm of Phase Change Memory Cells for Analog In-Memory Computing". Materials 14, n.º 7 (26 de marzo de 2021): 1624. http://dx.doi.org/10.3390/ma14071624.
Texto completoNguyen, Huu Tan, Andrzej Kusiak, Jean Luc Battaglia, Cecile Gaborieau, Yanick Anguy, Roberto Fallica, Claudia Wiemer, Alessio Lamperti y Massimo Longo. "Thermal Properties of In-Sb-Te Thin Films for Phase Change Memory Application". Advances in Science and Technology 95 (octubre de 2014): 113–19. http://dx.doi.org/10.4028/www.scientific.net/ast.95.113.
Texto completoShao, Mingyue, Yang Qiao, Yuan Xue, Sannian Song, Zhitang Song y Xiaodan Li. "Advantages of Ta-Doped Sb3Te1 Materials for Phase Change Memory Applications". Nanomaterials 13, n.º 4 (5 de febrero de 2023): 633. http://dx.doi.org/10.3390/nano13040633.
Texto completoInoue, Nobuki y Hisao Nakamura. "Structural transition pathway and bipolar switching of the GeTe–Sb2Te3 superlattice as interfacial phase-change memory". Faraday Discussions 213 (2019): 303–19. http://dx.doi.org/10.1039/c8fd00093j.
Texto completoNoor, Nafisa, Sadid Muneer, Raihan Sayeed Khan, Anna Gorbenko y Helena Silva. "Amorphized length and variability in phase-change memory line cells". Beilstein Journal of Nanotechnology 11 (29 de octubre de 2020): 1644–54. http://dx.doi.org/10.3762/bjnano.11.147.
Texto completoLi, Tao, Liang Cai Wu, Zhi Tang Song, San Nian Song, Feng Rao y Bo Liu. "Carbon-Doped Sb-Rich Ge-Sb-Te Phase Change Material for High Speed and High Thermal Stability Phase Change Memory Applications". Materials Science Forum 898 (junio de 2017): 1834–38. http://dx.doi.org/10.4028/www.scientific.net/msf.898.1834.
Texto completoKim, Myoung Sub, Jin Hyung Jun, Jin Ho Oh, Hyeong Joon Kim, Jae Sung Roh, Suk Kyoung Hong y Doo Jin Choi. "Electrical Switching Characteristics of Nitrogen Doped Ge2Sb2Te5 Based Phase Change Random Access Memory Cell". Solid State Phenomena 124-126 (junio de 2007): 21–24. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.21.
Texto completoOh, Sang Ho, Kyungjoon Baek, Sung Kyu Son, Kyung Song, Jang Won Oh, Seung-Joon Jeon, Won Kim, Jong Hee Yoo y Kee Jeung Lee. "In situ TEM observation of void formation and migration in phase change memory devices with confined nanoscale Ge2Sb2Te5". Nanoscale Advances 2, n.º 9 (2020): 3841–48. http://dx.doi.org/10.1039/d0na00223b.
Texto completoYoon, Jong Moon, Hu Young Jeong, Sung Hoon Hong, You Yin, Hyoung Seok Moon, Seong-Jun Jeong, Jun Hee Han et al. "Large-area, scalable fabrication of conical TiN/GST/TiN nanoarray for low-power phase change memory". J. Mater. Chem. 22, n.º 4 (2012): 1347–51. http://dx.doi.org/10.1039/c1jm14190b.
Texto completoChen, Yimin, Nan Han, Fanshuo Kong, Jun-Qiang Wang, Chenjie Gu, Yixiao Gao, Guoxiang Wang y Xiang Shen. "Kinetics features of 2D confined Ge2Sb2Te5 ultrathin film". Applied Physics Letters 121, n.º 6 (8 de agosto de 2022): 061904. http://dx.doi.org/10.1063/5.0100570.
Texto completoPathak, Anushmita, Shivendra Kumar Pandey y Jitendra Kumar Behera. "Optical band-gap evolution and local structural change in Ge2Sb2Te5 phase change material". Journal of Physics: Conference Series 2426, n.º 1 (1 de febrero de 2023): 012045. http://dx.doi.org/10.1088/1742-6596/2426/1/012045.
Texto completoHamada, Seiti, Takafumi Horiike, Tomohiro Uno, Masato Ishikawa, Hideaki Machida, Yoshio Ohshita y Atsushi Ogura. "Evaluation of GexSbyTez Film Grown by Chemical Vapor Deposition". Materials Science Forum 725 (julio de 2012): 289–92. http://dx.doi.org/10.4028/www.scientific.net/msf.725.289.
Texto completoKashem, Md Tashfiq Bin, Jake Scoggin, Helena Silva y Ali Gokirmak. "(Digital Presentation) Finite Element Modeling of Thermoelectric Effects in Phase Change Memory Cells". ECS Meeting Abstracts MA2022-01, n.º 18 (7 de julio de 2022): 1031. http://dx.doi.org/10.1149/ma2022-01181031mtgabs.
Texto completoKashem, Md Tashfiq Bin, Jake Scoggin, Ali Gokirmak y Helena Silva. "(Digital Presentation) Electrothermal Modeling of Interfacial Phase Change Memory". ECS Meeting Abstracts MA2022-01, n.º 18 (7 de julio de 2022): 1032. http://dx.doi.org/10.1149/ma2022-01181032mtgabs.
Texto completoKiouseloglou, Athanasios, Gabriele Navarro, Veronique Sousa, Alain Persico, Anne Roule, Alessandro Cabrini, Guido Torelli et al. "A Novel Programming Technique to Boost Low-Resistance State Performance in Ge-Rich GST Phase Change Memory". IEEE Transactions on Electron Devices 61, n.º 5 (mayo de 2014): 1246–54. http://dx.doi.org/10.1109/ted.2014.2310497.
Texto completoYamamoto, Takuya, Shogo Hatayama, Yun-Heub Song y Yuji Sutou. "Influence of Thomson effect on amorphization in phase-change memory: dimensional analysis based on Buckingham’s П theorem for Ge2Sb2Te5". Materials Research Express 8, n.º 11 (1 de noviembre de 2021): 115902. http://dx.doi.org/10.1088/2053-1591/ac3953.
Texto completoMeng, Yingjie, Yimin Chen, Kexin Peng, Bin Chen, Chenjie Gu, Yixiao Gao, Guoxiang Wang y Xiang Shen. "GeTe ultrathin film based phase-change memory with extreme thermal stability, fast SET speed, and low RESET power energy". AIP Advances 13, n.º 3 (1 de marzo de 2023): 035205. http://dx.doi.org/10.1063/5.0138286.
Texto completoZhang, Dan, Yifeng Hu, Haipeng You, Xiaoqin Zhu, Yuemei Sun, Hua Zou y Yan Zheng. "High Reliability and Fast-Speed Phase-Change Memory Based on Sb70Se30/SiO2 Multilayer Thin Films". Advances in Materials Science and Engineering 2018 (21 de junio de 2018): 1–6. http://dx.doi.org/10.1155/2018/9693015.
Texto completoHira, Takashi, Takayuki Uchiyama, Kenta Kuwamura, Yuya Kihara, Tasuku Yawatari y Toshiharu Saiki. "Switching the Localized Surface Plasmon Resonance of Single Gold Nanorods with a Phase-Change Material and the Implementation of a Cellular Automata Algorithm Using a Plasmon Particle Array". Advances in Optical Technologies 2015 (2 de febrero de 2015): 1–5. http://dx.doi.org/10.1155/2015/150791.
Texto completoKashem, Md Tashfiq Bin, Sadid Muneer, Lhacene Adnane, Faruk Dirisaglik, Ali Gokirmak y Helena Silva. "(Digital Presentation) Calculation of the Energy Band Diagram and Estimation of Electronic Transport Parameters of Metastable Amorphous Ge2Sb2Te5". ECS Meeting Abstracts MA2022-01, n.º 18 (7 de julio de 2022): 1043. http://dx.doi.org/10.1149/ma2022-01181043mtgabs.
Texto completoCueto, O., C. Jahan, V. Sousa, J. F. Nodin, S. Syoud, L. Perniola, A. Fantini et al. "Analysis by simulation of amorphization current in phase change memory applied to pillar and GST confined type cells". Microelectronic Engineering 88, n.º 5 (mayo de 2011): 827–32. http://dx.doi.org/10.1016/j.mee.2010.09.022.
Texto completo