Literatura académica sobre el tema "Phase change memory GST"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Phase change memory GST".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Phase change memory GST"
S. A.Aziz, M., F. H. M.Fauzi, Z. Mohamad y R. I. Alip. "The Effect of Channel Length on Phase Transition of Phase Change Memory". International Journal of Engineering & Technology 7, n.º 3.11 (21 de julio de 2018): 25. http://dx.doi.org/10.14419/ijet.v7i3.11.15923.
Texto completoGolovchak, R., Y. G. Choi, S. Kozyukhin, Yu Chigirinsky, A. Kovalskiy, P. Xiong-Skiba, J. Trimble, R. Pafchek y H. Jain. "Oxygen incorporation into GST phase-change memory matrix". Applied Surface Science 332 (marzo de 2015): 533–41. http://dx.doi.org/10.1016/j.apsusc.2015.01.203.
Texto completoBehrens, Mario, Andriy Lotnyk, Hagen Bryja, Jürgen W. Gerlach y Bernd Rauschenbach. "Structural Transitions in Ge2Sb2Te5 Phase Change Memory Thin Films Induced by Nanosecond UV Optical Pulses". Materials 13, n.º 9 (1 de mayo de 2020): 2082. http://dx.doi.org/10.3390/ma13092082.
Texto completoStern, Keren, Yair Keller, Christopher M. Neumann, Eric Pop y Eilam Yalon. "Temperature-dependent thermal resistance of phase change memory". Applied Physics Letters 120, n.º 11 (14 de marzo de 2022): 113501. http://dx.doi.org/10.1063/5.0081016.
Texto completoKim, Sung Soon, Jun Hyun Bae, Woo Hyuck Do, Kyun Ho Lee, Young Tae Kim, Young Kwan Park, Jeong Taek Kong y Hong Lim Lee. "Thermal Stress Model for Phase Change Random Access Memory". Solid State Phenomena 124-126 (junio de 2007): 37–40. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.37.
Texto completoRaeis-Hosseini, Niloufar y Junsuk Rho. "Dual-Functional Nanoscale Devices Using Phase-Change Materials: A Reconfigurable Perfect Absorber with Nonvolatile Resistance-Change Memory Characteristics". Applied Sciences 9, n.º 3 (8 de febrero de 2019): 564. http://dx.doi.org/10.3390/app9030564.
Texto completoAgarwal, Satish C. "Role of potential fluctuations in phase-change GST memory devices". physica status solidi (b) 249, n.º 10 (17 de agosto de 2012): 1956–61. http://dx.doi.org/10.1002/pssb.201200362.
Texto completoXue, Yuan, Sannian Song, Xiaogang Chen, Shuai Yan, Shilong Lv, Tianjiao Xin y Zhitang Song. "Enhanced performance of phase change memory by grain size reduction". Journal of Materials Chemistry C 10, n.º 9 (2022): 3585–92. http://dx.doi.org/10.1039/d1tc06045g.
Texto completoPacco, Antoine, Ju-Geng Lai, Pallavi Puttarame Gowda, Hanne De Coster, Jens Rip, Kurt Wostyn y Efrain Altamirano Sanchez. "Wet Chemical Recess Etching of Ge2Sb2Te5 for 3D PCRAM Memory Applications". ECS Meeting Abstracts MA2022-01, n.º 28 (7 de julio de 2022): 1262. http://dx.doi.org/10.1149/ma2022-01281262mtgabs.
Texto completoYin, You y Sumio Hosaka. "Crystal Growth Suppression by N-Doping into Chalcogenide for Application to Next-Generation Phase Change Memory". Key Engineering Materials 497 (diciembre de 2011): 101–5. http://dx.doi.org/10.4028/www.scientific.net/kem.497.101.
Texto completoTesis sobre el tema "Phase change memory GST"
Giovanardi, Fabio <1984>. "Analysis of charge-transport properties in GST materials for next generation phase-change memory devices". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amsdottorato.unibo.it/5583/4/giovanardi_fabio_tesi.pdf.
Texto completoLo sviluppo dei sistemi di memoria di futura generazione è guidato principalmente dalla ricerca di una tecnologia in grado di superare quelle attuali in ogni loro specifica di funzionamento, dalla ritenzione di dato alla velocità di accesso, migliorandone la durata e riducendo il dispendio energetico. Il sottosistema delle memorie assorbe una parte significativa delle risorse del macro sistema costituito dal calcolatore, tanto da aver quasi raggiunto il limite tecnologico nel caso delle odierne memorie di tipo DRAM. La soluzione più promettente sembra essere quella delle memorie a cambiamento di fase (PCM), in grado di colmare anche i limiti mostrati dalla tecnologia Flash nell’ambito della durata e scalabilità. I materiali che consentono di realizzare dispostivi a cambiamento di fase pilotato elettricamente appartengono alla famiglia dei calcogenuri. Tra i diversi composti calcogenuri quello attualmente identificato come soluzione più promettente è il Ge2Sb2Te5 (GST). Il trasporto di carica all’interno di dispositivi di memoria realizzati con tali materiali è stato modellato considerando l’azione di due contributi differenti: hopping di cariche intrappolate e moto di elettroni liberi in stati estesi. Il GST mostra un comportamento elettrico pressoché Ohmico in fase cristallina mentre, in fase amorfa, risulta essere poco conduttivo per basse correnti fino al superamento di una tensione di soglia oltre la quale si assiste al passaggio da uno stato altamente resistivo ad uno altamente conduttivo, caratterizzato da un andamento a resistenza differenziale negativa (NDR). Il meccanismo retroattivo che induce il fenomeno di snapback viene descritto come filamentazione in energia controllata dalle interazioni tra elettroni liberi ed elettroni intrappolati. Il modello fisico ricavato è stato implementato all’interno di un simulatore di dispositivi di ultima generazione ed è stato in seguito riprodotto in una versione analitica semplificata in grado, però, di permettere una prima analisi del comportamento elettrico del dispositivo e delle sue proprietà di scaling.
Giovanardi, Fabio <1984>. "Analysis of charge-transport properties in GST materials for next generation phase-change memory devices". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amsdottorato.unibo.it/5583/.
Texto completoLo sviluppo dei sistemi di memoria di futura generazione è guidato principalmente dalla ricerca di una tecnologia in grado di superare quelle attuali in ogni loro specifica di funzionamento, dalla ritenzione di dato alla velocità di accesso, migliorandone la durata e riducendo il dispendio energetico. Il sottosistema delle memorie assorbe una parte significativa delle risorse del macro sistema costituito dal calcolatore, tanto da aver quasi raggiunto il limite tecnologico nel caso delle odierne memorie di tipo DRAM. La soluzione più promettente sembra essere quella delle memorie a cambiamento di fase (PCM), in grado di colmare anche i limiti mostrati dalla tecnologia Flash nell’ambito della durata e scalabilità. I materiali che consentono di realizzare dispostivi a cambiamento di fase pilotato elettricamente appartengono alla famiglia dei calcogenuri. Tra i diversi composti calcogenuri quello attualmente identificato come soluzione più promettente è il Ge2Sb2Te5 (GST). Il trasporto di carica all’interno di dispositivi di memoria realizzati con tali materiali è stato modellato considerando l’azione di due contributi differenti: hopping di cariche intrappolate e moto di elettroni liberi in stati estesi. Il GST mostra un comportamento elettrico pressoché Ohmico in fase cristallina mentre, in fase amorfa, risulta essere poco conduttivo per basse correnti fino al superamento di una tensione di soglia oltre la quale si assiste al passaggio da uno stato altamente resistivo ad uno altamente conduttivo, caratterizzato da un andamento a resistenza differenziale negativa (NDR). Il meccanismo retroattivo che induce il fenomeno di snapback viene descritto come filamentazione in energia controllata dalle interazioni tra elettroni liberi ed elettroni intrappolati. Il modello fisico ricavato è stato implementato all’interno di un simulatore di dispositivi di ultima generazione ed è stato in seguito riprodotto in una versione analitica semplificata in grado, però, di permettere una prima analisi del comportamento elettrico del dispositivo e delle sue proprietà di scaling.
Hernandez, Gerardo Rodriguez. "Study of mixed mode electro-optical operations of Ge2Sb2Te5". Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:5bb8c1f5-2f4b-4eb0-a61a-3978af04211f.
Texto completoKiouseloglou, Athanasios. "Caractérisation et conception d' architectures basées sur des mémoires à changement de phase". Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT128/document.
Texto completoSemiconductor memory has always been an indispensable component of modern electronic systems. The increasing demand for highly scaled memory devices has led to the development of reliable non-volatile memories that are used in computing systems for permanent data storage and are capable of achieving high data rates, with the same or lower power dissipation levels as those of current advanced memory solutions.Among the emerging non-volatile memory technologies, Phase Change Memory (PCM) is the most promising candidate to replace conventional Flash memory technology. PCM offers a wide variety of features, such as fast read and write access, excellent scalability potential, baseline CMOS compatibility and exceptional high-temperature data retention and endurance performances, and can therefore pave the way for applications not only in memory devices, but also in energy demanding, high-performance computer systems. However, some reliability issues still need to be addressed in order for PCM to establish itself as a competitive Flash memory replacement.This work focuses on the study of embedded Phase Change Memory in order to optimize device performance and propose solutions to overcome the key bottlenecks of the technology, targeting high-temperature applications. In order to enhance the reliability of the technology, the stoichiometry of the phase change material was appropriately engineered and dopants were added, resulting in an optimized thermal stability of the device. A decrease in the programming speed of the memory technology was also reported, along with a residual resistivity drift of the low resistance state towards higher resistance values over time.A novel programming technique was introduced, thanks to which the programming speed of the devices was improved and, at the same time, the resistance drift phenomenon could be successfully addressed. Moreover, an algorithm for programming PCM devices to multiple bits per cell using a single-pulse procedure was also presented. A pulse generator dedicated to provide the desired voltage pulses at its output was designed and experimentally tested, fitting the programming demands of a wide variety of materials under study and enabling accurate programming targeting the performance optimization of the technology
Sevison, Gary Alan. "Silicon Compatible Short-Wave Infrared Photonic Devices". University of Dayton / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1523553057993197.
Texto completoAboujaoude, Andrea E. "Nanopatterned Phase-Change Materials for High-Speed, Continuous Phase Modulation". University of Dayton / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1538243834791942.
Texto completoSeong, Nak Hee. "A reliable, secure phase-change memory as a main memory". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/50123.
Texto completoHuang, Bolong. "Theoretical study on phase change memory materials". Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609986.
Texto completoAlmoric, Jean. "Développement d'un nouvel instrument couplant FIB/SEM UHV et OTOF-SIMS à haute résolution spatiale pour la microélectronique et ses applications". Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0368.
Texto completoSecondary Ion Mass Spectrometry (SIMS) is probably the most widely used chemical analysis technique in semiconductor science and metallurgy because of its ultimate sensitivity to all elements, especially the lighter ones. With systems downsizing, high-resolution 3D chemical imaging is becoming a prerequisite for the development of new materials. In this thesis, we report the development and optimization of an innovative SIMS implemented in a scanning electron microscope. The equipment makes it possible to obtain elementary chemical mapping at very high resolution (~25nm). The capacity of the technique is demonstrated with the characterization at the nanometric scale on the one hand of metallic superalloys necessary for the manufacture of aircraft engine parts and on the other hand of chalcogenide alloys used in the latest generation phase change memories developed in microelectronics
Huang, Ruomeng. "Confined nanoscale chalcogenide phase change material and memory". Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/379321/.
Texto completoLibros sobre el tema "Phase change memory GST"
Redaelli, Andrea, ed. Phase Change Memory. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69053-7.
Texto completo1976-, Chen Yiran, ed. Nonvolatile memory design: Magnetic, resistive, and phase change. Boca Raton, FL: Taylor & Francis, 2012.
Buscar texto completoLan, Rui. Thermophysical Properties and Measuring Technique of Ge-Sb-Te Alloys for Phase Change Memory. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2217-8.
Texto completoDurable Phase-Change Memory Architectures. Elsevier, 2020. http://dx.doi.org/10.1016/s0065-2458(20)x0004-0.
Texto completoAsadinia, Marjan y Hamid Sarbazi-Azad. Durable Phase-Change Memory Architectures. Elsevier Science & Technology, 2020.
Buscar texto completoAsadinia, Marjan y Hamid Sarbazi-Azad. Durable Phase-Change Memory Architectures. Elsevier Science & Technology Books, 2020.
Buscar texto completoMuralimanohar, Naveen, Moinuddin K. Qureshi, Sudhanva Gurumurthi y Bipin Rajendran. Phase Change Memory: From Devices to Systems. Springer International Publishing AG, 2011.
Buscar texto completoQureshi, Moinuddin K., Sudhanva Gurumurthi y Bipin Rajendran. Phase Change Memory: From Devices to Systems. Morgan & Claypool Publishers, 2011.
Buscar texto completoQureshi, Moinuddin K., Sudhanva Gurumurthi y Bipin Rajendran. Phase Change Memory: From Devices to Systems. Morgan & Claypool Publishers, 2011.
Buscar texto completoRedaelli, Andrea. Phase Change Memory: Device Physics, Reliability and Applications. Springer, 2018.
Buscar texto completoCapítulos de libros sobre el tema "Phase change memory GST"
Jeyasingh, Rakesh, Ethan C. Ahn, S. Burc Eryilmaz, Scott Fong y H. S. Philip Wong. "Phase Change Memory". En Emerging Nanoelectronic Devices, 78–109. Chichester, United Kingdom: John Wiley & Sons Ltd, 2014. http://dx.doi.org/10.1002/9781118958254.ch05.
Texto completoPirovano, Agostino. "An Introduction on Phase-Change Memories". En Phase Change Memory, 1–10. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69053-7_1.
Texto completoVilla, Corrado. "PCM Array Architecture and Management". En Phase Change Memory, 285–311. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69053-7_10.
Texto completoAtwood, Gregory. "PCM Applications and an Outlook to the Future". En Phase Change Memory, 313–24. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69053-7_11.
Texto completoIelmini, Daniele. "Electrical Transport in Crystalline and Amorphous Chalcogenide". En Phase Change Memory, 11–39. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69053-7_2.
Texto completoBoniardi, Mattia. "Thermal Model and Remarkable Temperature Effects on the Chalcogenide Alloy". En Phase Change Memory, 41–64. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69053-7_3.
Texto completoRedaelli, Andrea. "Self-Consistent Numerical Model". En Phase Change Memory, 65–88. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69053-7_4.
Texto completoGleixner, Robert. "PCM Main Reliability Features". En Phase Change Memory, 89–124. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69053-7_5.
Texto completoNoé, Pierre y Françoise Hippert. "Structure and Properties of Chalcogenide Materials for PCM". En Phase Change Memory, 125–79. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69053-7_6.
Texto completoSousa, Véronique y Gabriele Navarro. "Material Engineering for PCM Device Optimization". En Phase Change Memory, 181–222. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69053-7_7.
Texto completoActas de conferencias sobre el tema "Phase change memory GST"
Jackson, D. C. S., M. Nardone, V. Karpov y I. Karpov. "Relaxation Oscillation in GST-Based Phase Change Memory Devices". En 2009 IEEE International Memory Workshop (IMW). IEEE, 2009. http://dx.doi.org/10.1109/imw.2009.5090605.
Texto completoBaldo, M., L. Laurin, E. Petroni, G. Samanni, M. Allegra, E. Gomiero, D. Ielmini y A. Redaelli. "Modeling Environment for Ge-rich GST Phase Change Memory Cells". En 2022 IEEE International Memory Workshop (IMW). IEEE, 2022. http://dx.doi.org/10.1109/imw52921.2022.9779290.
Texto completoZheng, J. F., P. Chen, W. Hunks, W. Li, J. Cleary, J. Reed, J. Ricker et al. "MOCVD GST for high speed and low current Phase Change Memory". En 2011 11th Annual Non-Volatile Memory Technology Symposium (NVMTS). IEEE, 2011. http://dx.doi.org/10.1109/nvmts.2011.6137102.
Texto completoLee, Jaeho, Takashi Kodama, Yoonjin Won, Mehdi Asheghi y Kenneth E. Goodson. "Thermoelectric Characterization of Ge2Sb2Te5 Films for Phase-Change Memory". En ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75092.
Texto completoLi, Zijian, Jaeho Lee, John P. Reifenberg, Mehdi Asheghi, H. S. Philip Wong y Kenneth E. Goodson. "In-Plane Thermal Conduction and Conductivity Anisotropy in Ge2Sb2Te5 Films for Phase Change Memory". En ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40459.
Texto completoLee, Jaeho, John P. Reifenberg, Mehdi Asheghi y Kenneth E. Goodson. "High Temperature Thermal Characterization of Ge2Sb2Te5 for Phase Change Memory". En ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44230.
Texto completoYang, Yizhang, Taehee Jeong, Hendrik F. Hamann, Jimmy Zhu y Mehdi Asheghi. "Thermal Conductivity Measurements and Modeling of Phase-Change GST Materials". En ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32830.
Texto completoSong, Yibin, Ruixuan Huang, Yiying Zhang y Haiyang Zhang. "A study of GST etching process for phase change memory application". En 2016 China Semiconductor Technology International Conference (CSTIC). IEEE, 2016. http://dx.doi.org/10.1109/cstic.2016.7464012.
Texto completoFantini, A., L. Perniola, M. Armand, J. F. Nodin, V. Sousa, A. Persico, J. Cluzel et al. "Comparative Assessment of GST and GeTe Materials for Application to Embedded Phase-Change Memory Devices". En 2009 IEEE International Memory Workshop (IMW). IEEE, 2009. http://dx.doi.org/10.1109/imw.2009.5090585.
Texto completoChao, Der-Sheng, Frederick T. Chen, Yen-Ya Hsu, Wen-Hsing Liu, Chain-Ming Lee, Chih-Wei Chen, Wei-Su Chen, Ming-Jer Kao y Ming-Jinn Tsai. "Multi-level phase change memory using slow-quench operation: GST vs. GSST". En 2009 International Symposium on VLSI Technology, Systems, and Applications (VLSI-TSA). IEEE, 2009. http://dx.doi.org/10.1109/vtsa.2009.5159282.
Texto completo