Siga este enlace para ver otros tipos de publicaciones sobre el tema: Perovskite.

Artículos de revistas sobre el tema "Perovskite"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Perovskite".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Zhang, Lei, Mingze Xia, Yuan Zhang, Li Song, Xiwei Guo, Yong Zhang, Yulei Wang y Yuanqin Xia. "The Effect of Organic Spacer Cations with Different Chain Lengths on Quasi-Two-Dimensional Perovskite Properties". Inorganics 12, n.º 1 (27 de diciembre de 2023): 12. http://dx.doi.org/10.3390/inorganics12010012.

Texto completo
Resumen
In the past 20 years, perovskite-related research has attracted wide attention. The related research into two-dimensional/quasi-two-dimensional perovskite has propelled the research of perovskite materials to a new height. To improve the properties of quasi-2D perovskite, improve the stability of materials, and achieve specific functions, using different types, volumes, and lengths of organic spacers is an essential method. In this paper, quasi-2D perovskites with EDA (ethylene diammonium), PDA (1,3-propanediammonium), and BDA (1,4-butanediammonium) (m = 2–4) as organic spacers were prepared, and the effects of different organic spacers on the 2D perovskite were investigated. The results show that the length of the organic spacer significantly impacts the perovskite’s properties. A shorter organic spacer can effectively reduce the quantum confinement and dielectric confinement in perovskite. It should be noted that if the organic spacer is too short, the stability of the quasi-2D perovskite will be greatly reduced.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Zhou, Dahua, Leyong Yu, Peng Zhu, Hongquan Zhao, Shuanglong Feng y Jun Shen. "Lateral Structured Phototransistor Based on Mesoscopic Graphene/Perovskite Heterojunctions". Nanomaterials 11, n.º 3 (5 de marzo de 2021): 641. http://dx.doi.org/10.3390/nano11030641.

Texto completo
Resumen
Due to their outstanding optical properties and superior charge carrier mobilities, organometal halide perovskites have been widely investigated in photodetection and solar cell areas. In perovskites photodetection devices, their high optical absorption and excellent quantum efficiency contribute to the responsivity, even the specific detectivity. In this work, we developed a lateral phototransistor based on mesoscopic graphene/perovskite heterojunctions. Graphene nanowall shows a porous structure, and the spaces between graphene nanowall are much appropriated for perovskite crystalline to mount in. Hot carriers are excited in perovskite, which is followed by the holes’ transfer to the graphene layer through the interfacial efficiently. Therefore, graphene plays the role of holes’ collecting material and carriers’ transporting channel. This charge transfer process is also verified by the luminescence spectra. We used the hybrid film to build phototransistor, which performed a high responsivity and specific detectivity of 2.0 × 103 A/W and 7.2 × 1010 Jones, respectively. To understand the photoconductive mechanism, the perovskite’s passivation and the graphene photogating effect are proposed to contribute to the device’s performance. This study provides new routes for the application of perovskite film in photodetection.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Meyer, Edson, Dorcas Mutukwa, Nyengerai Zingwe y Raymond Taziwa. "Lead-Free Halide Double Perovskites: A Review of the Structural, Optical, and Stability Properties as Well as Their Viability to Replace Lead Halide Perovskites". Metals 8, n.º 9 (27 de agosto de 2018): 667. http://dx.doi.org/10.3390/met8090667.

Texto completo
Resumen
Perovskite solar cells employ lead halide perovskite materials as light absorbers. These perovskite materials have shown exceptional optoelectronic properties, making perovskite solar cells a fast-growing solar technology. Perovskite solar cells have achieved a record efficiency of over 20%, which has superseded the efficiency of Gräztel dye-sensitized solar cell (DSSC) technology. Even with their exceptional optical and electric properties, lead halide perovskites suffer from poor stability. They degrade when exposed to moisture, heat, and UV radiation, which has hindered their commercialization. Moreover, halide perovskite materials consist of lead, which is toxic. Thus, exposure to these materials leads to detrimental effects on human health. Halide double perovskites with A2B′B″X6 (A = Cs, MA; B′ = Bi, Sb; B″ = Cu, Ag, and X = Cl, Br, I) have been investigated as potential replacements of lead halide perovskites. This work focuses on providing a detailed review of the structural, optical, and stability properties of these proposed perovskites as well as their viability to replace lead halide perovskites. The triumphs and challenges of the proposed lead-free A2B′B″X6 double perovskites are discussed here in detail.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Yan, Yanfa y Zhaoning Song. "(Invited) Perovskite/Perovskite Tandem Photoelectrodes for Unassisted Water Splitting". ECS Meeting Abstracts MA2024-01, n.º 35 (9 de agosto de 2024): 1985. http://dx.doi.org/10.1149/ma2024-01351985mtgabs.

Texto completo
Resumen
The bandgap tunability and low-temperature processing make halide perovskites excellent candidates for achieving efficient and cost-effective tandem devices for solar cells and solar-driven water electrolysis devices. Here, we report our progress on fabricating perovskite/perovskite tandem cells consisting of two solution-processed perovskite subcells for unassisted water-splitting applications. The perovskite/perovskite tandem photoelectrodes are achieved by monolithically integrating a wide-bandgap (1.7 – 2.1 eV) Pb-based mixed-halide (Br-I) perovskite top subcell and a narrower-bandgap (1.25 - 1.55 eV) bottom subcell based on Pb-based or mixed Pb-Sn iodide perovskites. Varying the halide perovskite composition for each subcell enables us to tailor the photovoltaic performance of the tandem devices. We demonstrate that perovskite/perovskite tandem solar cells can deliver open-circuit voltages of more than 2 V. The high photovoltage provides a sufficient overpotential to drive unassisted photoelectrochemical (PEC) water splitting with a solar-to-hydrogen conversion efficiency of more than 15%. After applying water-impermeable encapsulants, the perovskite/perovskite photoelectrodes can successfully operate in an aqueous environment and enable a long operational lifetime.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

McDonald, Calum, Chengsheng Ni, Paul Maguire, Paul Connor, John Irvine, Davide Mariotti y Vladimir Svrcek. "Nanostructured Perovskite Solar Cells". Nanomaterials 9, n.º 10 (18 de octubre de 2019): 1481. http://dx.doi.org/10.3390/nano9101481.

Texto completo
Resumen
Over the past decade, lead halide perovskites have emerged as one of the leading photovoltaic materials due to their long carrier lifetimes, high absorption coefficients, high tolerance to defects, and facile processing methods. With a bandgap of ~1.6 eV, lead halide perovskite solar cells have achieved power conversion efficiencies in excess of 25%. Despite this, poor material stability along with lead contamination remains a significant barrier to commercialization. Recently, low-dimensional perovskites, where at least one of the structural dimensions is measured on the nanoscale, have demonstrated significantly higher stabilities, and although their power conversion efficiencies are slightly lower, these materials also open up the possibility of quantum-confinement effects such as carrier multiplication. Furthermore, both bulk perovskites and low-dimensional perovskites have been demonstrated to form hybrids with silicon nanocrystals, where numerous device architectures can be exploited to improve efficiency. In this review, we provide an overview of perovskite solar cells, and report the current progress in nanoscale perovskites, such as low-dimensional perovskites, perovskite quantum dots, and perovskite-nanocrystal hybrid solar cells.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Yang, Bilin, Yujun Xie, Pan Zeng, Yurong Dong, Qiongrong Ou y Shuyu Zhang. "Tightly Compacted Perovskite Laminates on Flexible Substrates via Hot-Pressing". Applied Sciences 10, n.º 6 (11 de marzo de 2020): 1917. http://dx.doi.org/10.3390/app10061917.

Texto completo
Resumen
Pressure and temperature are powerful tools applied to perovskites to achieve recrystallization. Lamination, based on recrystallization of perovskites, avoids the limitations and improves the compatibility of materials and solvents in perovskite device architectures. In this work, we demonstrate tightly compacted perovskite laminates on flexible substrates via hot-pressing and investigate the effect of hot-pressing conditions on the lamination qualities and optical properties of perovskite laminates. The optimized laminates achieved at a temperature of 90 °C and a pressure of 10 MPa could sustain a horizontal pulling pressure of 636 kPa and a vertical pulling pressure of 71 kPa. Perovskite laminates exhibit increased crystallinity and a crystallization orientation preference to the (100) direction. The optical properties of laminated perovskites are almost identical to those of pristine perovskites, and the photoluminescence quantum yield (PLQY) survives the negative impact of thermal degradation. This work demonstrates a promising approach to physically laminating perovskite films, which may accelerate the development of roll-to-roll printed perovskite devices and perovskite tandem architectures in the future.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Janendra Pratap, Et al. "Modeling and Investigation of Highly Efficient Environment Friendly Perovskite Solar Cell with CuSbS2 as Hole Transport Layer". International Journal on Recent and Innovation Trends in Computing and Communication 11, n.º 9 (5 de noviembre de 2023): 4385–93. http://dx.doi.org/10.17762/ijritcc.v11i9.9925.

Texto completo
Resumen
The presence of lead and its associated toxicity represents a hindrance to the broad commercial production of lead halide perovskites and their utilization in solar photovoltaic devices. Although lead halide perovskites have found extensive application in solar cell technology, questions have arisen regarding the hazardous nature and durability of lead (Pb) in photovoltaic systems. This research seeks to address these concerns by exploring alternative materials, such as tin-based perovskites, to pave the way for cleaner and more sustainable energy solutions. The scientific community has shown increased interest in tin-based perovskites due to their superior efficiency and stability compared to lead-based perovskite solar cell. This research introduces a planar heterojunction solar cell utilizing tin-based perovskites that are free of lead. The simulation task was conducted using SCAPS-1d software. Device parameters for a lead-free PSC (perovskite solar cell) using significant framework FTO/WS2/CH3NH3SnI3(perovskite)/CuSbS2 included an examination of factors like perovskite layer thickness, the obsession of acceptors in the perovskite layer, defects density of perovskite layer, and the band gap of the perovskite layer. In this setup, WS2 served as the ETL material, CuSbS2 functioned as the HTL material, and the CH3NH3SnI3(Perovskite) was used as the absorber layer material. This configuration achieved an impressive PCE 32.5%, along with a Jsc34.1mAcm-², Voc1.02V and FF85.5%. These optimized results likelihood indicates the strong prospect for development of an eco-friendly and efficient model of PSC (perovskite solar cell).
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Ji, Long y Shibin Li. "Large organic cations are beneficial for slowing tin-based perovskites crystallization rate and improving efficiency". Journal of Physics: Conference Series 2306, n.º 1 (1 de noviembre de 2022): 012017. http://dx.doi.org/10.1088/1742-6596/2306/1/012017.

Texto completo
Resumen
Abstract In the past few years, the efficiency of perovskite cells has been improved rapidly, and the current efficiency can reach 25.8%. Since the lead in perovskite materials will pollute the environment, so people turn their attention to lead-free tin-based perovskites. Tin-based perovskites are becoming a research hotspot recently due to their nontoxic properties. However, due to the fast crystallization rate of tin-based perovskite, the improvement of the efficiency of tin-based perovskite cells is limited. In this work, by introducing ethylammonium iodine (EAI) into FA0.98SnI3 perovskite, it not only slowed down the crystallization rate of tin-based perovskite cells, but also improved the film morphology and slowed down the rate of Sn2+ oxidation, and finally achieved a solar cell conversion efficiency of 7.6%. This work provides a new strategy for the study of lead-free perovskites.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Era, Masanao, Yumeko Komatsu y Naotaka Sakamoto. "Enhancement of Exciton Emission in Lead Halide-Based Layered Perovskites by Cation Mixing". Journal of Nanoscience and Nanotechnology 16, n.º 4 (1 de abril de 2016): 3338–42. http://dx.doi.org/10.1166/jnn.2016.12295.

Texto completo
Resumen
Spin-coated films of a lead halide, PbX: X = I and Br, layered perovskites having cyclohexenylethyl ammonium molecule as an organic layer, which were mixed with other metal halide-based layered perovskites consisting of various divalent metal halides (for example, CaI2, CdI2, FeI2, SnBr2 and so on), were prepared. The results of X-ray diffraction measurements exhibited that solid solution formation between PbX-based layered perovskite and other divalent metal halide-based layered perovskites was observed up to very high molar concentration of 50 molar% in the mixed film samples when divalent cations having ionic radius close to that of Pb2+ were employed. In the solid solution films, the exciton emission was much enhanced at room temperature. Exciton emission intensity of PbI-based layered perovskite mixed with CaI-based layered perovskite (20 molar%) is about 5 times large that of the pristine PbI-based layered perovskite, and that of PbBr-based layered perovskite mixed with SnBr-based layered perovskite (20 molar%) was also about 5 times large that of the pristine PbBr-based layered perovskite at room temperature.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Korolev, Viacheslav I., Anatoly P. Pushkarev, Petr A. Obraztsov, Anton N. Tsypkin, Anvar A. Zakhidov y Sergey V. Makarov. "Enhanced terahertz emission from imprinted halide perovskite nanostructures". Nanophotonics 9, n.º 1 (27 de diciembre de 2019): 187–94. http://dx.doi.org/10.1515/nanoph-2019-0377.

Texto completo
Resumen
AbstractLead halide perovskites were known to be a prospective family of materials for terahertz (THz) generation. On the other hand, perovskite nanostructures, nanoantennas, and metasurfaces allow tailoring perovskites optical characteristics, resulting in more efficient interaction with incident or emitted light. Moreover, the perovskites are robust materials against formation of defects caused by mechanical deformations and can be efficiently nanostructured by various high throughput methods. In this work, we have enhanced THz emission from MAPbI3 perovskite upon femtosecond laser irradiation using nanoimprint lithography. The formed nanostructures not only improve absorption of the incident laser pulses, but also lead to a non-symmetric near-field distribution. As a result, we have enhanced the efficiency of THz emission from the nanostructured perovskite by 3.5 times as compared with a smooth perovskite film. Our results paved the way for a new application of large-scale perovskite nanostructuring, making halide perovskites competitive with more expensive conventional semiconductors for THz generation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Adjogri, Shadrack J. y Edson L. Meyer. "Chalcogenide Perovskites and Perovskite-Based Chalcohalide as Photoabsorbers: A Study of Their Properties, and Potential Photovoltaic Applications". Materials 14, n.º 24 (18 de diciembre de 2021): 7857. http://dx.doi.org/10.3390/ma14247857.

Texto completo
Resumen
In 2015, a class of unconventional semiconductors, Chalcogenide perovskites, remained projected as possible solar cell materials. The MAPbI3 hybrid lead iodide perovskite has been considered the best so far, and due to its toxicity, the search for potential alternatives was important. As a result, chalcogenide perovskites and perovskite-based chalcohalide have recently been considered options and potential thin-film light absorbers for photovoltaic applications. For the synthesis of novel hybrid perovskites, dimensionality tailoring and compositional substitution methods have been used widely. The study focuses on the optoelectronic properties of chalcogenide perovskites and perovskite-based chalcohalide as possibilities for future photovoltaic applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Miodyńska, Magdalena, Onur Cavdar y Anna Panciejko. "KOMPLEKSOWY PRZEGLĄD METOD PREPARATYKI, WŁAŚCIWOŚCI I ZASTOSOWAŃ FOTOKATALITYCZNYCH RÓŻNYCH STRUKTUR PEROWSKITOWYCH". Wiadomości Chemiczne 78, n.º 3 (18 de marzo de 2024): 243–62. https://doi.org/10.53584/wiadchem.2024.03.4.

Texto completo
Resumen
Perovskite materials for photocatalytic environmental and energy conversion applications have drawn excessive attention over recent years owing to their unique photoelectric and catalytic properties. As harvesting solar energy within the bounds of possibility is one of the main aims of photocatalysis, many research groups have devoted their efforts to developing perovskite-based photocatalytic materials from perovskite oxide to metal halide and double halide-based perovskite materials with various synthesis strategies. Particularly, halide and double halide-based perovskites are intriguing thanks to their tunable band gap and band structure depending on the type of halide. Apart from the obstacles related to charge separation and transport processes; instability under water, oxygen, and high temperature hindering their practical photocatalytic application are remaining challenges. Toxicity emerging from Pb2+ or Sn2+ release due to chemical instability is another concern to be tackled. Thus far, replacing Pb2+ or Sn2+ with Bi3+ is one of the current scopes in the perovskite photocatalysis area while ensuring chemical stability in halide-based perovskites and thus reducing toxicity. Despite all those challenges, the popularity of perovskite photocatalysis is growing amid the favorable light induced chemical reactions via a plentiful range of promising cost-effective manufacturing methods of perovskites. In this review, the principles and photocatalytic applications of the perovskite oxides, metal halide-based perovskites, and double halide-based are comprehensively discussed
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Heidari Gourji, Fatemeh y Dhayalan Velauthapillai. "A Review on Cs-Based Pb-Free Double Halide Perovskites: From Theoretical and Experimental Studies to Doping and Applications". Molecules 26, n.º 7 (1 de abril de 2021): 2010. http://dx.doi.org/10.3390/molecules26072010.

Texto completo
Resumen
Despite the progressive enhancement in the flexibility of Pb-based perovskites for optoelectronic applications, regrettably, they are facing two main challenges; (1) instability, which originates from using organic components in the perovskite structure, and (2) toxicity due to Pb. Therefore, new, stable non-toxic perovskite materials are demanded to overcome these drawbacks. The research community has been working on a wide variety of Pb-free perovskites with different molecular formulas and dimensionality. A variety of Pb-free halide double perovskites have been widely explored by different research groups in search for stable, non-toxic double perovskite material. Especially, Cs-based Pb-free halide double perovskite has been in focus recently. Herein, we present a review of theoretical and experimental research on Cs-based Pb-free double halide perovskites of structural formulas Cs2M+M3+X6 (M+ = Ag+, Na+, In+ etc.; M3+= Bi3+, In3+, Sb3+; X = Cl−, Br−, I¯) and Cs2M4+X6 (M4+ = Ti4+, Sn4+, Au4+ etc.). We also present the challenges faced by these perovskite compounds and their current applications especially in photovoltaics alongside the effect of metal dopants on their performance.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Wang, Junya, Pengcheng Xu, Xiaobo Ji, Minjie Li y Wencong Lu. "Feature Selection in Machine Learning for Perovskite Materials Design and Discovery". Materials 16, n.º 8 (16 de abril de 2023): 3134. http://dx.doi.org/10.3390/ma16083134.

Texto completo
Resumen
Perovskite materials have been one of the most important research objects in materials science due to their excellent photoelectric properties as well as correspondingly complex structures. Machine learning (ML) methods have been playing an important role in the design and discovery of perovskite materials, while feature selection as a dimensionality reduction method has occupied a crucial position in the ML workflow. In this review, we introduced the recent advances in the applications of feature selection in perovskite materials. First, the development tendency of publications about ML in perovskite materials was analyzed, and the ML workflow for materials was summarized. Then the commonly used feature selection methods were briefly introduced, and the applications of feature selection in inorganic perovskites, hybrid organic-inorganic perovskites (HOIPs), and double perovskites (DPs) were reviewed. Finally, we put forward some directions for the future development of feature selection in machine learning for perovskite material design.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Wang, Fangfang, Qing Chang, Yikai Yun, Sizhou Liu, You Liu, Jungan Wang, Yinyu Fang et al. "Hole-Transporting Low-Dimensional Perovskite for Enhancing Photovoltaic Performance". Research 2021 (28 de mayo de 2021): 1–11. http://dx.doi.org/10.34133/2021/9797053.

Texto completo
Resumen
Halide perovskites with low-dimensionalities (2D or quasi-2D) have demonstrated outstanding stabilities compared to their 3D counterparts. Nevertheless, poor charge-transporting abilities of organic components in 2D perovskites lead to relatively low power conversion efficiency (PCE) and thus limit their applications in photovoltaics. Here, we report a novel hole-transporting low-dimensional (HT2D) perovskite, which can form a hole-transporting channel on the top surface of 3D perovskite due to self-assembly effects of metal halide frameworks. This HT2D perovskite can significantly reduce interface trap densities and enhance hole-extracting abilities of a heterojunction region between the 3D perovskite and hole-transporting layer. Furthermore, the posttreatment by HT2D can also reduce the crystal defects of perovskite and improve film morphology. As a result, perovskite solar cells (PSCs) can effectively suppress nonradiative recombination, leading to an increasement on photovoltage to >1.20 V and thus achieving >20% power conversion efficiency and >500 h continuous illumination stability. This work provides a pathway to overcome charge-transporting limitations in low-dimensional perovskites and delivers significant enhancements on performance of PSCs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Tarasova, Nataliia A. "Heterovalent and isovalent doping of bilayer proton-conducting perovskite SrLa2Sc2O7". Electrochemical Materials and Technologies 2, n.º 2 (2023): 20232015. http://dx.doi.org/10.15826/elmattech.2023.2.015.

Texto completo
Resumen
Perovskite or perovskite-related structural materials are widely studied for their many functional properties. They can be used as components of energy sources such as solid oxide fuel cells. Along with classical perovskites, layered perovskites can also carry out high-temperature proton transport and are promising materials for use in electrochemical power engineering. In this paper, the possibility of heterovalent and isovalent doping of La and Sc sublattices of bilayer perovskite SrLa2Sc2O7 was made for the first time. It was shown that electrical conductivity increases in the row of bilayer perovskites SrLa2ScInO7 – SrLa2Sc2O7 – BaLa2In2O7 – BaNd2In2O7.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Mitchell, Roger H., Mark D. Welch y Anton R. Chakhmouradian. "Nomenclature of the perovskite supergroup: A hierarchical system of classification based on crystal structure and composition". Mineralogical Magazine 81, n.º 3 (junio de 2017): 411–61. http://dx.doi.org/10.1180/minmag.2016.080.156.

Texto completo
Resumen
AbstractOn the basis of extensive studies of synthetic perovskite-structured compounds it is possible to derive a hierarchy of hettotype structures which are derivatives of the arisotypic cubic perovskite structure (ABX3), exemplified by SrTiO3 (tausonite) or KMgF3 (parascandolaite) by: (1) tilting and distortion of the BX6 octahedra; (2) ordering of A- and B-site cations; (3) formation of A-, B- or X-site vacancies. This hierarchical scheme can be applied to some naturally-occurring oxides, fluorides,hydroxides, chlorides, arsenides, intermetallic compounds and silicates which adopt such derivative crystal structures. Application of this hierarchical scheme to naturally-occurring minerals results in the recognition of a perovskite supergroup which is divided into stoichiometric and non-stoichiometricperovskite groups, with both groups further divided into single ABX3 or double A2BB'X6 perovskites. Subgroups, and potential subgroups, of stoichiometric perovskites include: (1) silicate single perovskites of the bridgmanite subgroup;(2) oxide single perovskites of the perovskite subgroup (tausonite, perovskite, loparite, lueshite, isolueshite, lakargiite, megawite); (3) oxide single perovskites of the macedonite subgroup which exhibit second order Jahn-Teller distortions (macedonite, barioperovskite); (4) fluoride singleperovskites of the neighborite subgroup (neighborite, parascandolaite); (5) chloride single perovskites of the chlorocalcite subgroup; (6) B-site cation ordered double fluoride perovskites of the cryolite subgroup (cryolite, elpasolite, simmonsite); (7) B-site cation orderedoxide double perovskites of the vapnikite subgroup [vapnikite, (?) latrappite]. Non-stoichiometric perovskites include: (1) A-site vacant double hydroxides, or hydroxide perovskites, belonging to the söhngeite, schoenfliesite and stottite subgroups; (2) Anion-deficient perovskitesof the brownmillerite subgroup (srebrodolskite, shulamitite); (3) A-site vacant quadruple perovskites (skutterudite subgroup); (4) B-site vacant single perovskites of the oskarssonite subgroup [oskarssonite]; (5) B-site vacant inverse single perovskites of the coheniteand auricupride subgroups; (6) B-site vacant double perovskites of the diaboleite subgroup; (7) anion-deficient partly-inverse B-site quadruple perovskites of the hematophanite subgroup.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Kim, Taejun y Mun Hee Lee. "Display Application and Development Trend of Perovskite Emitters". Journal of Flexible and Printed Electronics 1, n.º 1 (agosto de 2022): 13–28. http://dx.doi.org/10.56767/jfpe.2022.1.1.13.

Texto completo
Resumen
Metal Halide Perovskites are receiving great attention as a next-generation emitter for display due to their excellent optoelectronic characteristics such as high photoluminescence quantum yield and narrow emission spectrum. Many research groups and companies are trying to apply perovskite emitters to displays, but for commercialization, some obstacles like low stability must be overcome. Herein, the advantages of applying perovskites in display devices are reviewed. Development progress of perovskite display using a color conversion film and limitations of current perovskite display technologies are summarized. Finally, strategies to improve the stability of perovskite color conversion film are described.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Chen, Lung-Chien, Ching-Ho Tien, Yang-Cheng Jhou y Wei-Cheng Lin. "Co-Solvent Controllable Engineering of MA0.5FA0.5Pb0.8Sn0.2I3 Lead–Tin Mixed Perovskites for Inverted Perovskite Solar Cells with Improved Stability". Energies 13, n.º 10 (13 de mayo de 2020): 2438. http://dx.doi.org/10.3390/en13102438.

Texto completo
Resumen
Use of a lead–tin mixed perovskite is generally considered an effective method to broaden the absorption wavelength of perovskite thin films. However, the preparation of lead–tin mixed perovskites is a major challenge due to the multivalent state of tin and stability in the atmosphere. This study attempted to replace the organic cation and metal elements of perovskites with a relatively thermal stable formamidinium (FA+) and a more environmentally friendly tin element. MA0.5FA0.5Pb0.8Sn0.2I3 lead–tin mixed perovskite thin films were prepared with the one-step spin-coating method. By adjusting the dimethylformamide (DMF):dimethyl sulfoxide (DMSO) concentration ratio of the lead–tin mixed perovskite precursor solution, the surface morphologies, crystallinity, and light-absorbing properties of the films were changed during synthesis to optimize the lead–tin mixed perovskite films as a light-absorbing layer of the inverted perovskite solar cells. The quality of the prepared lead–tin mixed perovskite film was the highest when the ratio of DMF:DMSO = 1:4. The power-conversion efficiency of the perovskite solar cell prepared with the film was 8.05%.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Wyn Jones, Eurig, Peter James Holliman, Leon Bowen, Arthur Connell, Christopher Kershaw y Diana Elizabeth Meza-Rojas. "Hybrid Al2O3-CH3NH3PbI3 Perovskites towards Avoiding Toxic Solvents". Materials 13, n.º 1 (6 de enero de 2020): 243. http://dx.doi.org/10.3390/ma13010243.

Texto completo
Resumen
We report the synthesis of organometal halide perovskites by milling CH3NH3I and PbI2 directly with an Al2O3 scaffold to create hybrid Al2O3-CH3NH3PbI3 perovskites, without the use of organic capping ligands that otherwise limit the growth of the material in the three dimensions. Not only does this improve the ambient stability of perovskites in air (100 min versus 5 min for dimethylformamide (DMF)-processed material), the method also uses much fewer toxic solvents (terpineol versus dimethylformamide). This has been achieved by solid-state reaction of the perovskite precursors to produce larger perovskite nanoparticles. The resulting hybrid perovskite–alumina particles effectively improve the hydrophobicity of the perovskite phase whilst the increased thermal mass of the Al2O3 increases the thermal stability of the organic cation. Raman data show the incorporation of Al2O3 shifts the perovskite spectrum, suggesting the formation of a hybrid 3D mesoporous stack. Laser-induced current mapping (LBIC) and superoxide generation measurements, coupled to thermogravimetric analysis, show that these hybrid perovskites demonstrate slightly improved oxygen and thermal stability, whilst ultra-fast X-ray diffraction studies using synchrotron radiation show substantial (20×) increase in humidity stability. Overall, these data show considerably improved ambient stability of the hybrid perovskites compared to the solution-processed material.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Zhang, Taiyang, Yuetian Chen, Miao Kan, Shumao Xu, Yanfeng Miao, Xingtao Wang, Meng Ren, Haoran Chen, Xiaomin Liu y Yixin Zhao. "MA Cation-Induced Diffusional Growth of Low-Bandgap FA-Cs Perovskites Driven by Natural Gradient Annealing". Research 2021 (18 de agosto de 2021): 1–11. http://dx.doi.org/10.34133/2021/9765106.

Texto completo
Resumen
Low-bandgap formamidinium-cesium (FA-Cs) perovskites of FA1-xCsxPbI3 (x<0.1) are promising candidates for efficient and robust perovskite solar cells, but their black-phase crystallization is very sensitive to annealing temperature. Unfortunately, the low heat conductivity of the glass substrate builds up a temperature gradient within from bottom to top and makes the initial annealing temperature of the perovskite film lower than the black-phase crystallization point (~150°C). Herein, we take advantage of such temperature gradient for the diffusional growth of high-quality FA-Cs perovskites by introducing a thermally unstable MA+ cation, which would firstly form α-phase FA-MA-Cs mixed perovskites with low formation energy at the hot bottom of the perovskite films in the early annealing stage. The natural gradient annealing temperature and the thermally unstable MA+ cation then lead to the bottom-to-top diffusional growth of highly orientated α-phase FA-Cs perovskite, which exhibits 10-fold of enhanced crystallinity and reduced trap density (~3.85×1015 cm−3). Eventually, such FA-Cs perovskite films were fabricated into stable solar cell devices with champion efficiency up to 23.11%, among the highest efficiency of MA-free perovskite solar cells.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Berhe, Taame Abraha, Wei-Nien Su y Bing Joe Hwang. "Halide Perovskites’ Multifunctional Properties: Coordination Engineering, Coordination Chemistry, Electronic Interactions and Energy Applications beyond Photovoltaics". Inorganics 12, n.º 7 (28 de junio de 2024): 182. http://dx.doi.org/10.3390/inorganics12070182.

Texto completo
Resumen
Halide perovskite materials have gained enormous attention for their semiconducting properties, higher power conversion efficiency and potential applications in a wide range of fields of study, along with their two key limitations: stability and toxicity. Despite great progress made on halide perovskites and many promising research developments, the issues of stability and toxicity have not been fully resolved. Therefore, the coordination engineering of a new framework to obtain alternative new halide perovskite materials and a fundamental understanding of the coordination chemistry and electronic interactions forming the structure of these newly engineered halide perovskite materials are possible ways to overcome the issues related to both stability and toxicity. In this review, we comprehensively review the current development of halide perovskite families, both lead halide perovskites and lead-free halide perovskites, followed by the coordination engineering of the new frameworks to engineer new halide perovskite materials. All concerns regarding the fundamental ideas of coordination chemistry and electronic interactions are vital in forming halide perovskite structures and thus form the main aim of this review. We also discuss recent potential energy applications beyond photovoltaics and thus answer an essential and open question, ‘what could happen in the future of halide perovskites?’ in order to excite commercial enterprises and research institutions again as well as to motivate new predictions on the future continuity of this field.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Ogundana, I. J. y S. Y. Foo. "Improving the Morphology of the Perovskite Absorber Layer in Hybrid Organic/Inorganic Halide Perovskite MAPbI3 Solar Cells". Journal of Solar Energy 2017 (3 de mayo de 2017): 1–9. http://dx.doi.org/10.1155/2017/8549847.

Texto completo
Resumen
Recently, perovskite solar cells have attracted tremendous attention due to their excellent power conversion efficiency, low cost, simple fabrications, and high photovoltaic performance. Furthermore, the perovskite solar cells are lightweight and possess thin film and semitransparency. However, the nonuniformity in perovskite layer constitutes a major setback to the operation mechanism, performance, reproducibility, and degradation of perovskite solar cells. Therefore, one of the main challenges in planar perovskite devices is the fabrication of high quality films with controlled morphology and least amount of pin-holes for high performance thin film perovskite devices. The poor reproducibility in perovskite solar cells hinders the accurate fabrication of practical devices for use in real world applications, and this is primarily as a result of the inability to control the morphology of perovskites, leading to large variability in the characteristics of perovskite solar cells. Hence, the focus of research in perovskites has been mostly geared towards improving the morphology and crystallization of perovskite absorber by selecting the optimal annealing condition considering the effect of humidity. Here we report a controlled ambient condition that is necessary to grow uniform perovskite crystals. A best PCE of 7.5% was achieved along with a short-circuit current density of 15.2 mA/cm2, an open-circuit voltage of 0.81 V, and a fill factor of 0.612 from the perovskite solar cell prepared under 60% relative humidity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Zou, Jifan, Mengkai Li, Xiaoyu Zhang y Weitao Zheng. "Perovskite quantum dots: Synthesis, applications, prospects, and challenges". Journal of Applied Physics 132, n.º 22 (14 de diciembre de 2022): 220901. http://dx.doi.org/10.1063/5.0126496.

Texto completo
Resumen
Metal-trihalide perovskite quantum dots combine the unique semiconducting properties of bulk perovskites with the controllable exciton dynamics benefiting from the quantum confinement effect. Composition- and size-adjustable electronic and optical properties of perovskites convert into a variety of applications. Here, we start from a brief introduction to perovskite quantum dots, followed by a detailed description of the synthesis methods and surface modification/passivation strategies of these nano-sized particles. Then, we review the applications of perovskite quantum dots including light-emitting diodes, photovoltaics, catalysis, sensing, bioimaging, and lasers. Finally, we develop outlooks for promising futures toward the commercial application of perovskite quantum dots.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Burger, Stefan, Shivani Grover, Keith T. Butler, Hanna L. B. Boström, Ricardo Grau-Crespo y Gregor Kieslich. "Tilt and shift polymorphism in molecular perovskites". Materials Horizons 8, n.º 9 (2021): 2444–50. http://dx.doi.org/10.1039/d1mh00578b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Kim, Young-Hoon, Himchan Cho y Tae-Woo Lee. "Metal halide perovskite light emitters". Proceedings of the National Academy of Sciences 113, n.º 42 (27 de septiembre de 2016): 11694–702. http://dx.doi.org/10.1073/pnas.1607471113.

Texto completo
Resumen
Twenty years after layer-type metal halide perovskites were successfully developed, 3D metal halide perovskites (shortly, perovskites) were recently rediscovered and are attracting multidisciplinary interest from physicists, chemists, and material engineers. Perovskites have a crystal structure composed of five atoms per unit cell (ABX3) with cation A positioned at a corner, metal cation B at the center, and halide anion X at the center of six planes and unique optoelectronic properties determined by the crystal structure. Because of very narrow spectra (full width at half-maximum ≤20 nm), which are insensitive to the crystallite/grain/particle dimension and wide wavelength range (400 nm ≤ λ ≤ 780 nm), perovskites are expected to be promising high-color purity light emitters that overcome inherent problems of conventional organic and inorganic quantum dot emitters. Within the last 2 y, perovskites have already demonstrated their great potential in light-emitting diodes by showing high electroluminescence efficiency comparable to those of organic and quantum dot light-emitting diodes. This article reviews the progress of perovskite emitters in two directions of bulk perovskite polycrystalline films and perovskite nanoparticles, describes current challenges, and suggests future research directions for researchers to encourage them to collaborate and to make a synergetic effect in this rapidly emerging multidisciplinary field.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

M A, Gokul y Atikur Rahman. "Phase evolution of all-inorganic perovskite nanowires during its growth from quantum dots". Nanotechnology 33, n.º 8 (3 de diciembre de 2021): 085706. http://dx.doi.org/10.1088/1361-6528/ac37e2.

Texto completo
Resumen
Abstract All-inorganic lead-halide perovskites have emerged as an exciting material owing to their excellent optoelectronic properties and high stability over hybrid organometallic perovskites. Nanowires of these materials, in particular, have shown great promise for optoelectronic applications due to their high optical absorption coefficient and low defect state density. However, the synthesis of the most promising alpha-Cesium lead iodide (α-CsPbI3) nanowires is challenging as it is metastable and spontaneously converts to a non-perovskite δ-phase. The hot-injection method is one of the most facile, well-controlled, and commonly used approaches for synthesizing CsPbX3 nanostructures. But the exact mechanism of growing these nanowires in this technique is not clear. Here, we show that the hot-injection method produces photoactive phases of quantum dots (QDs) and nanowires of CsPbBr3, and QDs of CsPbI3, but CsPbI3 nanowires are grown in their non-perovskite δ-phase. Monitoring the nanowire growth during the hot-injection technique and through detailed characterization, we establish that CsPbI3 nanowires are formed in the non-perovskite phase from the beginning rather than transforming after its growth from perovskite to a non-perovskite phase. We have discussed a possible mechanism of how non-perovskite nanowires of CsPbI3 grow at the expense of photoactive perovskite QDs. Our findings will help to synthesize nanostructures of all-inorganic perovskites with desired phases, which is essential for successful technological applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Hirose, Kei, Ryosuke Sinmyo y John Hernlund. "Perovskite in Earth’s deep interior". Science 358, n.º 6364 (9 de noviembre de 2017): 734–38. http://dx.doi.org/10.1126/science.aam8561.

Texto completo
Resumen
Silicate perovskite-type phases are the most abundant constituent inside our planet and are the predominant minerals in Earth’s lower mantle more than 660 kilometers below the surface. Magnesium-rich perovskite is a major lower mantle phase and undergoes a phase transition to post-perovskite near the bottom of the mantle. Calcium-rich perovskite is proportionally minor but may host numerous trace elements that record chemical differentiation events. The properties of mantle perovskites are the key to understanding the dynamic evolution of Earth, as they strongly influence the transport properties of lower mantle rocks. Perovskites are expected to be an important constituent of rocky planets larger than Mars and thus play a major role in modulating the evolution of terrestrial planets throughout the universe.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Perez Franco, Jorge A., Antonieta García Murillo, Felipe de J. Carrillo Romo, Issis C. Romero Ibarra y Arturo Cervantes Tobón. "Identifying Crystal Structure of Halides of Strontium and Barium Perovskite Compounds with EXPO2014 Software". Materials 18, n.º 1 (26 de diciembre de 2024): 58. https://doi.org/10.3390/ma18010058.

Texto completo
Resumen
The synthesis of ethylamine-based perovskites has emerged to attempt to replace the lead in lead-based perovskites for the alkaline earth elements barium and strontium, introducing chloride halide to prepare the perovskites in solar cell technology. X-ray diffraction studies were conducted, and EXPO2014 software was utilized to resolve the structure. Chemical characterization was performed using Fourier transform infrared spectroscopy, photophysical properties were analyzed through ultraviolet–visible spectroscopy, and photoluminescence properties were determined to confirm the perovskite characteristics. The software employed can determine new crystal structures, as follows: orthorhombic for barium perovskite CH3CH2NH3BaCl3 and tetragonal for strontium perovskite CH3CH2NH3SrCl3. The ultraviolet–visible spectroscopy data demonstrated that a temperature increase (90–110 °C) contributed to reducing the band gap from 3.93 eV to 3.67 eV for barium perovskite and from 4.05 eV to 3.84 eV for strontium perovskite. The results exhibited that new materials can be obtained through gentle chemistry and specialized software like EXPO2014, both of which are capable of conducting reciprocal and direct space analyses for identifying crystal structures using powder X-ray diffraction.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Bartel, Christopher J., Christopher Sutton, Bryan R. Goldsmith, Runhai Ouyang, Charles B. Musgrave, Luca M. Ghiringhelli y Matthias Scheffler. "New tolerance factor to predict the stability of perovskite oxides and halides". Science Advances 5, n.º 2 (febrero de 2019): eaav0693. http://dx.doi.org/10.1126/sciadv.aav0693.

Texto completo
Resumen
Predicting the stability of the perovskite structure remains a long-standing challenge for the discovery of new functional materials for many applications including photovoltaics and electrocatalysts. We developed an accurate, physically interpretable, and one-dimensional tolerance factor, τ, that correctly predicts 92% of compounds as perovskite or nonperovskite for an experimental dataset of 576 ABX3 materials (X = O2−, F−, Cl−, Br−, I−) using a novel data analytics approach based on SISSO (sure independence screening and sparsifying operator). τ is shown to generalize outside the training set for 1034 experimentally realized single and double perovskites (91% accuracy) and is applied to identify 23,314 new double perovskites (A2BB′X6) ranked by their probability of being stable as perovskite. This work guides experimentalists and theorists toward which perovskites are most likely to be successfully synthesized and demonstrates an approach to descriptor identification that can be extended to arbitrary applications beyond perovskite stability predictions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Barua, Pranta y Inchan Hwang. "Bulk Perovskite Crystal Properties Determined by Heterogeneous Nucleation and Growth". Materials 16, n.º 5 (5 de marzo de 2023): 2110. http://dx.doi.org/10.3390/ma16052110.

Texto completo
Resumen
In metal halide perovskites, charge transport in the bulk of the films is influenced by trapping and release and nonradiative recombination at ionic and crystal defects. Thus, mitigating the formation of defects during the synthesis process of perovskites from precursors is required for better device performance. An in-depth understanding of the nucleation and growth mechanisms of perovskite layers is crucial for the successful solution processing of organic–inorganic perovskite thin films for optoelectronic applications. In particular, heterogeneous nucleation, which occurs at the interface, must be understood in detail, as it has an effect on the bulk properties of perovskites. This review presents a detailed discussion on the controlled nucleation and growth kinetics of interfacial perovskite crystal growth. Heterogeneous nucleation kinetics can be controlled by modifying the perovskite solution and the interfacial properties of perovskites adjacent to the underlaying layer and to the air interface. As factors influencing the nucleation kinetics, the effects of surface energy, interfacial engineering, polymer additives, solution concentration, antisolvents, and temperature are discussed. The importance of the nucleation and crystal growth of single-crystal, nanocrystal, and quasi-two-dimensional perovskites is also discussed with respect to the crystallographic orientation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Oku, Takeo. "Crystal structures of perovskite halide compounds used for solar cells". REVIEWS ON ADVANCED MATERIALS SCIENCE 59, n.º 1 (4 de julio de 2020): 264–305. http://dx.doi.org/10.1515/rams-2020-0015.

Texto completo
Resumen
AbstractThe crystal structures of various types of perovskite halide compounds were summarized and described. Atomic arrangements of these perovskite compounds can be investigated by X-ray diffraction and transmission electron microscopy. Based on the structural models of basic perovskite halides, X-ray and electron diffractions were calculated and discussed to compare with the experimental data. Other halides such as elemental substituted or cation ordered double perovskite compounds were also described. In addition to the ordinary 3-dimensional perovskites, low dimensional perovskites with 2-, 1-, or 0-dimensionalities were summarized. The structural stabilities of the perovskite halides could be investigated computing the tolerance and octahedral factors, which can be useful for the guideline of elemental substitution to improve the structures and properties, and several low toxic halides were proposed. For the device conformation, highly crystalline-orientated grains and dendritic structures can be formed and affected the photo-voltaic properties. The actual crystal structures of perovskite halides in the thin film configuration were studied by Rietveld analysis optimizing the atomic coordinates and occupancies with low residual factors. These results are useful for structure analysis of perovskite halide crystals, which are expected to be next-generation solar cell materials.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Kamat, Prashant V. y Gabor Szabo. "(Keynote) Controlling Ion Migration in Metal Halide Perovskites for Better Solar Cell Stability". ECS Meeting Abstracts MA2024-02, n.º 19 (22 de noviembre de 2024): 1719. https://doi.org/10.1149/ma2024-02191719mtgabs.

Texto completo
Resumen
The ability to tune the bandgap of metal halide perovskites through compositional alloying of the halide ion is of interest in designing tandem solar cells and light emitting displays. However, photoinduced migration of halide ions can significantly affect the device performance. One such property is photoinduced phase segregation in mixed halide perovskites (MHP), which forms bromide rich and iodide-rich domains. These domains act as charge carrier traps and lower the efficiency of perovskite-based devices.[1,2] The thermodynamic and redox properties of halide perovskites provide a strong driving force for hole trapping and oxidation of iodide species. Thus, the mobility of halides and their susceptibility to hole-induced oxidation play a crucial role in determining the long-term stability of metal halide perovskite solar cells. When Ruddlesden-Popper 2D mixed-halide perovskite films with spacer cations such as butylammonium are introduced into three-dimensional (3D) perovskite films, they can stabilize them against moisture-induced degradation at room temperature. While such passivation of 3D perovskites using 2D perovskites has been reported widely, the instability of the 2D/3D interface during long term solar cell operation can be problematic.[3,4] The cation migration under light and heat can significantly alter the 2D/3D interface, thus affecting the solar cell performance. Thus, suppression of halide ion migration as well as cation migration remains a key factor in achieving long term stability and improving efficiency of perovskite solar cells and light emitting devices.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Liang, Jiechun, Tingting Wu2, Ziwei Wang, Yunduo Yu, Linfeng Hu, Huamei Li, Xiaohong Zhang, Xi Zhu y Yu Zhao. "Accelerating perovskite materials discovery and correlated energy applications through artificial intelligence". Energy Materials 2, n.º 3 (2022): 200016. http://dx.doi.org/10.20517/energymater.2022.14.

Texto completo
Resumen
Perovskites are promising materials applied in new energy devices, from solar cells to battery electrodes. Under traditional experimental conditions in laboratories, the performance improvement of new energy devices is slow and limited. Artificial intelligence (AI) has recently drawn much attention in material properties prediction and new functional materials exploration. With the advent of the AI era, the methods of studying perovskites have been upgraded, thereby benefiting the energy industry. In this review, we summarize the application of AI in perovskite discovery and synthesis and its positive influence on new energy research. First, we list the advantages of AI in perovskite research and the steps of AI application in perovskite discovery, including data availability, the selection of training algorithms, and the interpretation of results. Second, we introduce a new synthesis method with high efficiency in cloud labs and explain how this platform can assist perovskite discovery. We review the use of perovskites in energy applications and illustrate that the efficiency of energy production in these fields can be significantly boosted due to the use of AI in the development process. This review aims to provide the future application prospects of AI in perovskite research and new energy generation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Diouf, Boucar, Aarti Muley y Ramchandra Pode. "Issues, Challenges, and Future Perspectives of Perovskites for Energy Conversion Applications". Energies 16, n.º 18 (8 de septiembre de 2023): 6498. http://dx.doi.org/10.3390/en16186498.

Texto completo
Resumen
Perovskite solar cells are an emerging technology that exploits the self-assembly and highly tunable bandgap properties of perovskite materials. Because of their low manufacturing cost, thin films of perovskites have attracted enormous interest and witnessed great progress. The power conversion efficiency of these devices has improved from 3.8% to 25.8%, which is a significant step forward. The formulation of innovative materials with the proper replacement of lead in perovskites is essential to reduce lead toxicity. Here, we examine the difficulties encountered in the commercialization of perovskite devices, such as material and structural stability, device stability under high temperature and humidity conditions, lifetime, and manufacturing cost. This review addresses issues such as device engineering, performance stability against the harsh environment, cost-effectiveness, recombination, optical, and resistance losses, large-area solar cell module issues, material cost analysis, module cost reduction strategy, and environmental concerns, which are important for the widespread acceptance of perovskite-based solar devices. The applications and market growth prospects of perovskite cells are also studied. In summary, we believe there is a great opportunity to research high-performance, long-lived perovskites and cells for energy applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Yu, Guoping, Yuanmei Huang, Danish Khan, Yujie Sui, Shuanglin Wang, Xiqi Yang, Wencai Zhou et al. "RbPbI3 Seed Embedding in PbI2 Substrate Tailors the Facet Orientation and Crystallization Kinetics of Perovskites". Small, 26 de octubre de 2023. http://dx.doi.org/10.1002/smll.202307219.

Texto completo
Resumen
AbstractHigh power conversion efficiencies (PCEs) in perovskite solar cells (PSCs) have always been awe‐inspiring, but perovskite films scalability is an exacting precondition for PSCs commercial deployment, generally unachievable through the antisolvent technique. On the contrary, in the two‐step sequential method, the perovskite's uncontrolled crystallization and unnecessary PbI2 residue impede the device's performance. These two issues motivated to empower the PbI2 substrate with orthorhombic RbPbI3 crystal seeds, which act as grown nuclei and develop orientated perovskites lattice stacks, improving the perovskite films morphologically and reducing the PbI2 content in eventual perovskite films. Thence, achieving a PCE of 24.17% with suppressed voltage losses and an impressive life span of 1140 h in the open air.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Lee, Hyeonseok, Taeho Moon, Younghyun Lee y Jinhyun Kim. "Structural Mechanisms of Quasi-2D Perovskites for Next-Generation Photovoltaics". Nano-Micro Letters 17, n.º 1 (8 de febrero de 2025). https://doi.org/10.1007/s40820-024-01609-9.

Texto completo
Resumen
Abstract Quasi-two-dimensional (2D) perovskite embodies characteristics of both three-dimensional (3D) and 2D perovskites, achieving the superior external environment stability structure of 2D perovskites alongside the high efficiency of 3D perovskites. This effect is realized through critical structural modifications in device fabrication. Typically, perovskites have an octahedral structure, generally ABX3, where an organic ammonium cation (A') participates in forming the perovskite structure, with A'(n) (n = 1 or 2) sandwiched between A(n-1)B(n)X(3n+1) perovskite layers. Depending on whether A' is a monovalent or divalent cation, 2D perovskites are classified into Ruddlesden-Popper perovskite or Dion-Jacobson perovskite, each generating different structures. Although each structure achieves similar effects, they incorporate distinct mechanisms in their formation. And according to these different structures, various properties appear, and additive and optimizing methods to increase the efficiency of 3D perovskites also exist in 2D perovskites. In this review, scientific understanding and engineering perspectives of the quasi-2D perovskite is investigated, and the optimal structure quasi-2D and the device optimization is also discussed to provide the insight in the field.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Matsushima, Toshinori, Chuanjiang Qin, Teng Teng, Narayanaswamy Kamatham, Lydia Sosa Vargas, David Kreher, Benoit Heinrich et al. "Efficient Electroluminescence from Organic Fluorophore‐Containing Perovskite Films". Advanced Materials, 17 de octubre de 2024. http://dx.doi.org/10.1002/adma.202408775.

Texto completo
Resumen
AbstractTwo‐dimensional perovskites containing an organic fluorophore can be a unique emitter for light‐emitting diodes (LEDs). However, external quantum efficiencies (EQEs) of fluorophore‐containing perovskite LEDs reported thus far are still very low. In this study, these are able to boost the EQE to ≈10% by choosing an organic fluorophore with appropriate energy levels for the perovskite structure organization. In the fluorophore‐containing perovskite LEDs, carrier transport and exciton formation take place in the perovskite's metal halide framework, thereby avoiding the direct formation of nonradiative triplet excitons on the organic fluorophores. Subsequently, the bright triplet excitons formed in the metal halide framework are transferred to form the radiative singlet states of the organic fluorophores, leading to efficient electroluminescence (EL) from the organic fluorophores regularly dispersed inside the perovskite structure. Unexpectedly higher light‐outcoupling efficiency, which is caused by the light scattering in the polycrystalline perovskite layer, will be another reason for efficient EL. These findings will contribute toward the fabrication of LED‐based products with high performance at a low cost.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Yang, Zhibin, Zhenhua Yu, Haotong Wei, Xun Xiao, Zhenyi Ni, Bo Chen, Yehao Deng et al. "Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells". Nature Communications 10, n.º 1 (3 de octubre de 2019). http://dx.doi.org/10.1038/s41467-019-12513-x.

Texto completo
Resumen
Abstract Developing multijunction perovskite solar cells (PSCs) is an attractive route to boost PSC efficiencies to above the single-junction Shockley-Queisser limit. However, commonly used tin-based narrow-bandgap perovskites have shorter carrier diffusion lengths and lower absorption coefficient than lead-based perovskites, limiting the efficiency of perovskite-perovskite tandem solar cells. In this work, we discover that the charge collection efficiency in tin-based PSCs is limited by a short diffusion length of electrons. Adding 0.03 molar percent of cadmium ions into tin-perovskite precursors reduce the background free hole concentration and electron trap density, yielding a long electron diffusion length of 2.72 ± 0.15 µm. It increases the optimized thickness of narrow-bandgap perovskite films to 1000 nm, yielding exceptional stabilized efficiencies of 20.2 and 22.7% for single junction narrow-bandgap PSCs and monolithic perovskite-perovskite tandem cells, respectively. This work provides a promising method to enhance the optoelectronic properties of narrow-bandgap perovskites and unleash the potential of perovskite-perovskite tandem solar cells.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Zhang, Jing, Xinxin Zheng, Qingyue Cui, Yuying Yao, Hang Su, Yutong She, Yujie Zhu, Deng Li y Shengzhong (Frank) Liu. "Manipulating the Crystallization of Perovskite via Metal‐Free DABCO‐NH4Cl3 Addition for High Efficiency Solar Cells". Advanced Functional Materials, 5 de junio de 2024. http://dx.doi.org/10.1002/adfm.202404816.

Texto completo
Resumen
AbstractThe performance of perovskite cells closely relies on the quality of films, leading to a special focus on crystallization manipulation and defect control. In this study, a novel approach using 1D metal‐free perovskites, specifically DABCO‐NH4Cl3, is proposed to facilitate the crystallization process of 3D FAPbI3 perovskites, while simultaneously addressing surface defects. Analysis of crystallization kinetics reveals that the introduction of 1D metal‐free perovskites provides numerous nucleation sites, effectively slowing down crystal growth rates and resulting in the formation of uniform, large‐grain perovskite films. Furthermore, the organic groups present in 1D perovskites play a crucial role in passivating defects within the perovskite structure. The synergistic impact of these factors enables the perovskite to achieve an efficiency of 24.72% while demonstrating exceptional stability. This research offers a promising approach for controlling perovskite crystallization, leading to the development of high‐efficiency and stable perovskite materials.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Kundar, Milon, Prasun Kumar, Satinder Kumar Sharma, Ranbir Singh y Suman Kalyan Pal. "Stable Perovskite Solar Cells Based on Direct Surface Passivation Employing 2D Perovskites". Solar RRL, 28 de septiembre de 2023. http://dx.doi.org/10.1002/solr.202300572.

Texto completo
Resumen
Surface passivation of 3D perovskites with highly stable 2D perovskite is an effective strategy to improve both performance and stability of perovskite solar cells (PSCs). In this study, a new approach has been employed for synthesis of oleic acid (OA) and octylamine (OcA)‐assisted 2D perovskites TEA2PbX4 (X = I, Br) in antisolvent and directly used them for the surface passivation of MAFAPbI3 (3D) perovskite. The grain boundary and interface are both optimized in 3D/2D perovskite by 2D perovskite to improve surface morphology. It is found that the 2D perovskite effectively suppresses carrier recombination by reducing the defect density and facilitates interfacial charge extraction through better energy level alignments. As a result, power‐conversion efficiency (PCE) of PSCs is boosted up to 18.56% and 19.87% for passivation with TEA2PbI4 and TEA2PbBr4, respectively. The passivated perovskite devices exhibit good thermal, operational, and long‐term stability in an ambient environment because of the material robustness of 3D/2D hybrid perovskites.GA: TEA2PbI4 and TEA2PbBr4 2D perovskites are directly employed for surface passivation in hybrid perovskite solar cells with a 3D structure. The passivated perovskite devices demonstrate enhanced surface morphology when compared to the devices utilizing 3D perovskites. Furthermore, the solar cells with surface passivation exhibit significantly higher efficiency in comparison to conventional 3D perovskite solar cells.This article is protected by copyright. All rights reserved.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Uzurano, Genya, Kentaro Abe, Tomoki Saito, Akihiko Fujii y Masanori OZAKI. "Layer-number tailoring and template-induced orientation control of 2D perovskite on 3D perovskite by adopting Dion-Jacobson phase". Applied Physics Express, 7 de octubre de 2022. http://dx.doi.org/10.35848/1882-0786/ac9883.

Texto completo
Resumen
Abstract Orientation-controlled 2D perovskites consisting of octahedral monolayers has been realized on 3D perovskites. By bar-coating a Dion-Jacobson (DJ) phase 2D perovskite precursor solution onto the 3D perovskite thin films, the conversion of the top layer of 3D perovskite to 2D perovskite was promoted, and the optimal 2D/3D heterostructure could be fabricated. The orientation of the DJ 2D perovskite could be controlled horizontally or obliquely according to the 3D perovskite template thin films; the 2D perovskite was obliquely oriented on (200)/(112)-oriented CH3NH3PbI3, and horizontally oriented on (110)-oriented CH3NH3PbI2.5Cl0.5. This approach would boost the stability and power conversion efficiency of 2D/3D heterostructure.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Kore, Bhushan P., Wei Zhang, Billy W. Hoogendoorn, Majid Safdari y James M. Gardner. "Moisture tolerant solar cells by encapsulating 3D perovskite with long-chain alkylammonium cation-based 2D perovskite". Communications Materials 2, n.º 1 (23 de septiembre de 2021). http://dx.doi.org/10.1038/s43246-021-00200-8.

Texto completo
Resumen
AbstractLong-term stability is an essential requirement for perovskite solar cells to be commercially viable. Encapsulating 3D perovskites with 2D perovskite structures is an effective strategy for improving resistance to moisture. However, long-chain alkylammonium cation-based 2D perovskites have been rarely studied in solar cells. Here, we study three different alkyl chain length organic cation-based 2D perovskite coatings for 3D perovskites. The 2D perovskite incorporated solar cells show significant improvement in solar cell stability with limited compromise in solar cell efficiency, with the longest alkyl chain length sample showing only a 20% drop in power conversion efficiency after 6 months at a relative humidity of 25-80%, and could be completely immersed in water for a few minutes before degradation started. The 2D perovskite coating also mitigated non-radiative recombination in the light-absorbing 3D perovskite, leading to an enhancement in the open circuit voltage. These findings suggest that long-chain alkylammonium cation based 2D perovskites can improve the environmental stability of 3D based perovskites without significant losses to device performance.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Yang, Yingguo, Shanglei Feng, Xiaoxi Li, Minchao Qin, Lina Li, Xuyong Yang y Renzhong Tai. "Synchrotron Radiation‐Based In Situ GIWAXS for Metal Halide Perovskite Solution Spin‐Coating Fabrication". Advanced Science, 11 de julio de 2024. http://dx.doi.org/10.1002/advs.202403778.

Texto completo
Resumen
AbstractSolution‐processable perovskite‐based devices are potentially very interesting because of their relatively cheap fabrication cost but outstanding optoelectronic performance. However, the solution spin‐coating process involves complicated processes, including perovskite solution droplets, nucleation of perovskite, and formation of intermediate perovskite films, resulting in complicated crystallization pathways for perovskite films under annealing. Understanding and therefore controlling the fabrication process of perovskites is difficult. Recently, synchrotron radiation‐based in situ grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) techniques, which possess the advantages of high collimation, high resolution, and high brightness, have enabled to bridge complicated perovskite structure information with device performance by revealing the real‐time crystallization pathways of perovskites during the spin‐coating process. Herein, the developments of synchrotron radiation‐based in situ GIWAXS are discussed in the study of the crystallization process of perovskites, especially revealing the important crystallization mechanisms of state‐of‐the‐art perovskite optoelectronic devices with high performance. At the end, several potential applications and challenges associated with in situ GIWAXS techniques for perovskite‐based devices are highlighted.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Qiu, Junming, Qisen Zhou, Mei Yu, Jianhua Liu, Rongshan Zhuang, Yong Hua, Liming Ding y Xiaoliang Zhang. "Modulating CsPbl3 crystallization by using diammonium agent for efficient solar cells". SusMat, 10 de diciembre de 2023. http://dx.doi.org/10.1002/sus2.173.

Texto completo
Resumen
AbstractCesium lead triiodide (CsPbI3) perovskite receives tremendous attention for photovoltaic applications, owing to its remarkable thermal stability and optoelectronic properties. However, realizing the CsPbI3 perovskite with high black‐phase stability and optoelectronic properties remains a significant challenge, which largely affects the photovoltaic performance of perovskite solar cells (PSCs). Herein, aromatic ammonium agents are used to modulate the crystallization of the CsPbI3 perovskite to improve its black‐phase stability and optoelectronic properties for efficient PSCs. Systemically experimental studies and comprehensively theoretical calculations are performed, which reveal that histammonium dihydrochloride (HACl2) could strongly couple with the perovskite during its crystallization, leading to faster nucleation and slower perovskite growth, and thus modulating the crystallization dynamics of the perovskites. Moreover, the residual diammonium cations (HA2+) distributed at the grain boundaries and on the surface of the perovskites can effectively passivate defects through electrostatic interactions, substantially suppressing trap‐assisted nonradiative recombination, and prompting more matched perovskite surface energetics. Consequently, the photovoltaic performance of CsPbI3 PSCs is largely improved because of a combination of enhanced crystallinity and optoelectronic properties of the perovskites. This work offers a new avenue to prepare inorganic perovskites with high optoelectronic properties for photovoltaics.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Feng, Mengjia, Lingkun Kong, Jinlian Chen, Huifang Ma, Chenyang Zha y Linghai Zhang. "Band alignment engineering of 2D/3D halide perovskite lateral heterostructures". Journal of Chemical Physics 161, n.º 2 (10 de julio de 2024). http://dx.doi.org/10.1063/5.0214887.

Texto completo
Resumen
Two-dimensional (2D)/three-dimensional (3D) halide perovskite heterostructures have been extensively studied for their ability to combine the outstanding long-term stability of 2D perovskites with the superb optoelectronic properties of 3D perovskites. While current studies mostly focus on vertically stacked 2D/3D perovskite heterostructures, a theoretical understanding regarding the optoelectronic properties of 2D/3D perovskite lateral heterostructures is still lacking. Herein, we construct a series of 2D/3D perovskite lateral heterostructures to study their optoelectronic properties and interfacial charge transfer using density functional theory (DFT) calculations. We find that the band alignments of 2D/3D heterostructures can be regulated by varying the quantum-well thickness of 2D perovskites. Moreover, decreasing the 2D component ratio in 2D/3D heterostructures can be favorable to form type-I band alignment, whereas a large component ratio of 2D perovskites tends to form type-II band alignment. We can improve the amount of charge transfer at the 2D/3D perovskite interfaces and the light absorption of 2D perovskites by increasing quantum-well thickness. These present findings can provide a clear designing principle for achieving 3D/2D perovskite lateral heterostructures with tunable optoelectronic properties.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Dutta, Jayita, Mithun Chennamkulam Ajith, Soumya Dutta, Umesh R. Kadhane, Jinesh Kochupurackal B y Beena Rai. "An inherent instability study using ab initio computational methods and experimental validation of Pb(SCN)2 based perovskites for solar cell applications". Scientific Reports 10, n.º 1 (17 de septiembre de 2020). http://dx.doi.org/10.1038/s41598-020-72210-4.

Texto completo
Resumen
Abstract Perovskite materials with ABX3 chemistries are promising candidates for photovoltaic applications, owing to their suitable optoelectronic properties. However, they are highly hydrophilic and unstable in nature, limiting the commercialization of perovskite photovoltaics. Mixed halide ion-doped perovskites are reported to be more stable compared to simple ABX3 chemistries. This paper describes ab initio modeling, synthesis, and characterization of thiocyanate doped lead iodide CH3NH3PbI(3−x)(SCN)x perovskites. Several perovskite chemistries with an increasing concentration of (SCN)− at x = 0, 0.25, 0.49, 1.0, 1.45 were evaluated. Subsequently, ‘n-i-p’ and ‘p-i-n’ perovskite solar device architectures, corresponding to x = 0, 0.25, 0.49, 1.0 thiocyanate doped lead halide perovskite chemistry were fabricated. The study shows that among all the devices fabricated for different compositions of perovskites, p-i-n perovskite solar cell fabricated using CH3NH3PbI(3−x)(SCN)x perovskite at x = 1.0 exhibited the highest stability and device efficiency was retained until 450 h. Finally, a solar panel was fabricated and its stability was monitored.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Batool, Syeda Mehak, Khushbo e. Kainat, Suqqyana Fazal y Fawad Ahmad. "Comprehensive Review on Synthesis of Abox Material and its Catalytic Applications". Journal of Chemistry and Environment, 17 de octubre de 2022, 17–55. http://dx.doi.org/10.56946/jce.v1i01.49.

Texto completo
Resumen
Perovskites are materials with crystal structures comparable to perovskite (mineral). The backbone of perovskite is calcium titanium oxide (CaTiO3). Perovskite oxides with the general formula ABOx are highly important. In the general formula of perovskite ABX3, A & B are cations, where X is an anion that binds with two cations. Perovskites have proven their versatility in catalysis, photovoltaics, solar cells, electrode conducting material, etc. Due to their unique structural properties and applications, they are compatible with elements having metallic approximately 90% of the periodic table.This review discusses the synthesis and catalytic application of perovskite oxides. There are five sections to this review: (a) a brief description of perovskite oxides, (b) the synthesis of perovskite oxides with various properties, (c) general characterization, (d) catalytic applications, and (e) conclusions and future perspectives.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Li, Yumin, Yutian Lei, Haoxu Wang y Zhiwen Jin. "Two-Dimensional Metal Halides for X-Ray Detection Applications". Nano-Micro Letters 15, n.º 1 (20 de mayo de 2023). http://dx.doi.org/10.1007/s40820-023-01118-1.

Texto completo
Resumen
AbstractMetal halide perovskites have recently emerged as promising candidates for the next generation of X-ray detectors due to their excellent optoelectronic properties. Especially, two-dimensional (2D) perovskites afford many distinct properties, including remarkable structural diversity, high generation energy, and balanced large exciton binding energy. With the advantages of 2D materials and perovskites, it successfully reduces the decomposition and phase transition of perovskite and effectively suppresses ion migration. Meanwhile, the existence of a high hydrophobic spacer can block water molecules, thus making 2D perovskite obtain excellent stability. All of these advantages have attracted much attention in the field of X-ray detection. This review introduces the classification of 2D halide perovskites, summarizes the synthesis technology and performance characteristics of 2D perovskite X-ray direct detector, and briefly discusses the application of 2D perovskite in scintillators. Finally, this review also emphasizes the key challenges faced by 2D perovskite X-ray detectors in practical application and presents our views on its future development.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Hou, Shanyue, Zhu Ma, Yanlin Li, Zhuowei Du, Yi Chen, Junbo Yang, Wei You et al. "Bulk In Situ Reconstruction of Heterojunction Perovskite Enabling Stable Solar Cells Over 24% Efficiency". Advanced Functional Materials, 17 de octubre de 2023. http://dx.doi.org/10.1002/adfm.202310133.

Texto completo
Resumen
AbstractHeterojunction perovskite solar cells combine the stability of 2D perovskites and the high efficiency of 3D perovskites, making them an excellent photovoltaic candidate. While heterojunctions with intermixed or gradient perovskites can reduce surface recombination, the aggregation and phase distribution of 2D perovskite induce transport losses, thereby limiting device fill factors. Accordingly, a bulk in situ reconstruction (BISR) strategy is proposed to induce the reconstruction of 3D perovskites on a minim self‐assembled 2D crystal seed, forming heterojunction perovskite that runs through the entire active layer. This facilitates charge extraction, relieves tensile stress, and avoids the decomposition of perovskite on grain boundaries. As a result, the best‐performing heterojunction perovskite solar cells show a high‐power conversion efficiency (PCE) of 24.06% with 82.9% FF for the small‐area device (0.105 cm2) and a superior PCE of 19.2% for the large‐area module (5 × 5 cm2). Importantly, the unencapsulated device shows dramatically improved operational stability, maintaining 87% of its initial efficiency after 8000 h of storage under ambient atmosphere at room temperature. This work provides an effective and simple approach to establish heterojunction perovskite to simultaneously boost the efficiency and stability of PSCs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía