Siga este enlace para ver otros tipos de publicaciones sobre el tema: Permutation groups.

Artículos de revistas sobre el tema "Permutation groups"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Permutation groups".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Niemenmaa, Markku. "Decomposition of Transformation Groups of Permutation Machines". Fundamenta Informaticae 10, n.º 4 (1 de octubre de 1987): 363–67. http://dx.doi.org/10.3233/fi-1987-10403.

Texto completo
Resumen
By a permutation machine we mean a triple (Q,S,F), where Q and S are finite sets and F is a function Q × S → Q which defines a permutation on Q for every element from S. These permutations generate a permutation group G and by considering the structure of G we can obtain efficient ways to decompose the transformation group (Q,G). In this paper we first consider the situation where G is half-transitive and after this we show how to use our result in the general non-transitive case.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Burns, J. M., B. Goldsmith, B. Hartley y R. Sandling. "On quasi-permutation representations of finite groups". Glasgow Mathematical Journal 36, n.º 3 (septiembre de 1994): 301–8. http://dx.doi.org/10.1017/s0017089500030901.

Texto completo
Resumen
In [6], Wong defined a quasi-permutation group of degree n to be a finite group G of automorphisms of an n-dimensional complex vector space such that every element of G has non-negative integral trace. The terminology derives from the fact that if G is a finite group of permutations of a set ω of size n, and we think of G as acting on the complex vector space with basis ω, then the trace of an element g ∈ G is equal to the number of points of ω fixed by g. In [6] and [7], Wong studied the extent to which some facts about permutation groups generalize to the quasi-permutation group situation. Here we investigate further the analogy between permutation groups and quasipermutation groups by studying the relation between the minimal degree of a faithful permutation representation of a given finite group G and the minimal degree of a faithful quasi-permutation representation. We shall often prefer to work over the rational field rather than the complex field.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Bigelow, Stephen. "Supplements of bounded permutation groups". Journal of Symbolic Logic 63, n.º 1 (marzo de 1998): 89–102. http://dx.doi.org/10.2307/2586590.

Texto completo
Resumen
AbstractLet λ ≤ κ be infinite cardinals and let Ω be a set of cardinality κ. The bounded permutation group Bλ(Ω), or simply Bλ, is the group consisting of all permutations of Ω which move fewer than λ points in Ω. We say that a permutation group G acting on Ω is a supplement of Bλ if BλG is the full symmetric group on Ω.In [7], Macpherson and Neumann claimed to have classified all supplements of bounded permutation groups. Specifically, they claimed to have proved that a group G acting on the set Ω is a supplement of Bλ if and only if there exists Δ ⊂ Ω with ∣Δ∣ < λ such that the setwise stabiliser G{Δ} acts as the full symmetric group on Ω ∖ Δ. However I have found a mistake in their proof. The aim of this paper is to examine conditions under which Macpherson and Neumann's claim holds, as well as conditions under which a counterexample can be constructed. In the process we will discover surprising links with cardinal arithmetic and Shelah's recently developed pcf theory.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Cohen, Stephen D. "Permutation polynomials and primitive permutation groups". Archiv der Mathematik 57, n.º 5 (noviembre de 1991): 417–23. http://dx.doi.org/10.1007/bf01246737.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Tovstyuk, K. D., C. C. Tovstyuk y O. O. Danylevych. "The Permutation Group Theory and Electrons Interaction". International Journal of Modern Physics B 17, n.º 21 (20 de agosto de 2003): 3813–30. http://dx.doi.org/10.1142/s0217979203021812.

Texto completo
Resumen
The new mathematical formalism for the Green's functions of interacting electrons in crystals is constructed. It is based on the theory of Green's functions and permutation groups. We constructed a new object of permutation groups, which we call double permutation (DP). DP allows one to take into consideration the symmetry of the ground state as well as energy and momentum conservation in every virtual interaction. We developed the classification of double permutations and proved the theorem, which allows the selection of classes of associated double permutations (ADP). The Green's functions are constructed for series of ADP. We separate in the DP the convolving columns by replacing the initial interaction between the particles with the effective interaction. In convoluting the series for Green's functions, we use the methods developed for permutation groups schemes of Young–Yamanuti.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Boy de la Tour, Thierry y Mnacho Echenim. "On leaf permutative theories and occurrence permutation groups". Electronic Notes in Theoretical Computer Science 86, n.º 1 (mayo de 2003): 61–75. http://dx.doi.org/10.1016/s1571-0661(04)80653-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Senashov, Vasily S., Konstantin A. Filippov y Anatoly K. Shlepkin. "Regular permutations and their applications in crystallography". E3S Web of Conferences 525 (2024): 04002. http://dx.doi.org/10.1051/e3sconf/202452504002.

Texto completo
Resumen
The representation of a group G in the form of regular permutations is widely used for studying the structure of finite groups, in particular, parameters like the group density function. This is related to the increased potential of computer technologies for conducting calculations. The work addresses the problem of calculation regular permutations with restrictions on the structure of the degree and order of permutations. The considered regular permutations have the same nontrivial order, which divides the degree of the permutation. Examples of the application of permutation groups in crystallography and crystal chemistry are provided.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Cameron, Peter J. "Cofinitary Permutation Groups". Bulletin of the London Mathematical Society 28, n.º 2 (marzo de 1996): 113–40. http://dx.doi.org/10.1112/blms/28.2.113.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Lucchini, A., F. Menegazzo y M. Morigi. "Generating Permutation Groups". Communications in Algebra 32, n.º 5 (31 de diciembre de 2004): 1729–46. http://dx.doi.org/10.1081/agb-120029899.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Kearnes, Keith A. "Collapsing permutation groups". Algebra Universalis 45, n.º 1 (1 de febrero de 2001): 35–51. http://dx.doi.org/10.1007/s000120050200.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Gu, Yutong. "Introduction of Several Special Groups and Their Applications to Rubik’s Cube". Highlights in Science, Engineering and Technology 47 (11 de mayo de 2023): 172–75. http://dx.doi.org/10.54097/hset.v47i.8186.

Texto completo
Resumen
Group theory is the subject that aims to study the symmetries and structures of groups in mathematics. This work provides an introduction to group theory and explores some potential applications of group theory on complex geometric objects like the Rubik's cube. To this end, the concepts of symmetric group, permutation group, and cyclic group are introduced, and the famous Lagrange’s theorem and Cayley’s theorem are mentioned briefly. The former theorem establishes that a subgroup’s order must be a divisor of the parent group’s order. Concerning the permutation group, it is a set of permutations that form a group under composition. Hence, the various groups that can be formed by the Rubik's cube are discussed, including the group of all possible permutations of the cube's stickers, and the subgroups that are generated through permutations of the six basic movements embedded in Rubik’s cube. Overall, this essay provides an accessible introduction to group theory and its applications to the popular Rubik's cube.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Guralnick, Robert M. y David Perkinson. "Permutation polytopes and indecomposable elements in permutation groups". Journal of Combinatorial Theory, Series A 113, n.º 7 (octubre de 2006): 1243–56. http://dx.doi.org/10.1016/j.jcta.2005.11.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Liebeck, Martin W. y Aner Shalev. "Simple groups, permutation groups, and probability". Journal of the American Mathematical Society 12, n.º 2 (1999): 497–520. http://dx.doi.org/10.1090/s0894-0347-99-00288-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Chalapathi, T. y R. V. "Graphs of Permutation Groups". International Journal of Computer Applications 179, n.º 3 (15 de diciembre de 2017): 14–19. http://dx.doi.org/10.5120/ijca2017915872.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Burness, Timothy C. y Emily V. Hall. "Almost elusive permutation groups". Journal of Algebra 594 (marzo de 2022): 519–43. http://dx.doi.org/10.1016/j.jalgebra.2021.11.037.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Lucchini, Andrea, Marta Morigi y Mariapia Moscatiello. "Primitive permutation IBIS groups". Journal of Combinatorial Theory, Series A 184 (noviembre de 2021): 105516. http://dx.doi.org/10.1016/j.jcta.2021.105516.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Conway, John H., Alexander Hulpke y John McKay. "On Transitive Permutation Groups". LMS Journal of Computation and Mathematics 1 (1998): 1–8. http://dx.doi.org/10.1112/s1461157000000115.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Gerner, M. "Predicate-Induced Permutation Groups". Journal of Semantics 29, n.º 1 (13 de octubre de 2011): 109–44. http://dx.doi.org/10.1093/jos/ffr007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Adeleke, S. A. y Peter M. Neumann. "Infinite Bounded Permutation Groups". Journal of the London Mathematical Society 53, n.º 2 (abril de 1996): 230–42. http://dx.doi.org/10.1112/jlms/53.2.230.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

KOVÁCS, L. G. y M. F. NEWMAN. "GENERATING TRANSITIVE PERMUTATION GROUPS". Quarterly Journal of Mathematics 39, n.º 3 (1988): 361–72. http://dx.doi.org/10.1093/qmath/39.3.361.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Neumann, Peter M. "Some Primitive Permutation Groups". Proceedings of the London Mathematical Society s3-50, n.º 2 (marzo de 1985): 265–81. http://dx.doi.org/10.1112/plms/s3-50.2.265.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Atkinson, M. D. "Permutation Involvement and Groups". Quarterly Journal of Mathematics 52, n.º 4 (1 de diciembre de 2001): 415–21. http://dx.doi.org/10.1093/qjmath/52.4.415.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Cossey, John. "Quotients of permutation groups". Bulletin of the Australian Mathematical Society 57, n.º 3 (junio de 1998): 493–95. http://dx.doi.org/10.1017/s0004972700031907.

Texto completo
Resumen
If G is a finite permutation group of degree d and N is a normal subgroup of G, Derek Holt has given conditions which show that in some important special cases the least degree of a faithful permutation representation of the quotient G/N will be no larger than d. His conditions do not apply in all cases of interest and he remarks that it would be interesting to know if G/F(G) has a faithful representation of degree no larger than d (where F(G) is the Fitting subgroup of G). We prove in this note that this is the case.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Cigler, Grega. "Permutation-like matrix groups". Linear Algebra and its Applications 422, n.º 2-3 (abril de 2007): 486–505. http://dx.doi.org/10.1016/j.laa.2006.11.007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Mazurov, V. D. "2-Transitive permutation groups". Siberian Mathematical Journal 31, n.º 4 (1991): 615–17. http://dx.doi.org/10.1007/bf00970632.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Galvin, Fred. "Almost disjoint permutation groups". Proceedings of the American Mathematical Society 124, n.º 6 (1996): 1723–25. http://dx.doi.org/10.1090/s0002-9939-96-03264-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Hulpke, Alexander. "Constructing transitive permutation groups". Journal of Symbolic Computation 39, n.º 1 (enero de 2005): 1–30. http://dx.doi.org/10.1016/j.jsc.2004.08.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Cameron, Peter J. "Cycle-closed permutation groups". Journal of Algebraic Combinatorics 5, n.º 4 (octubre de 1996): 315–22. http://dx.doi.org/10.1007/bf00193181.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Grech, Mariusz. "Graphical cyclic permutation groups". Discrete Mathematics 337 (diciembre de 2014): 25–33. http://dx.doi.org/10.1016/j.disc.2014.08.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Bichon, Julien. "ALGEBRAIC QUANTUM PERMUTATION GROUPS". Asian-European Journal of Mathematics 01, n.º 01 (marzo de 2008): 1–13. http://dx.doi.org/10.1142/s1793557108000023.

Texto completo
Resumen
We discuss some algebraic aspects of quantum permutation groups, working over arbitrary fields. If 𝕂 is any characteristic zero field, we show that there exists a universal cosemisimple Hopf algebra coacting on the diagonal algebra 𝕂n: this is a refinement of Wang's universality theorem for the (compact) quantum permutation group. We also prove a structural result for Hopf algebras having a non-ergodic coaction on the diagonal algebra 𝕂n, on which we determine the possible group gradings when 𝕂 is algebraically closed and has characteristic zero.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Neumann, Peter M. y Cheryl E. Praeger. "Three-star permutation groups". Illinois Journal of Mathematics 47, n.º 1-2 (marzo de 2003): 445–52. http://dx.doi.org/10.1215/ijm/1258488164.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Kuzucuoğlu, M. "Barely transitive permutation groups". Archiv der Mathematik 55, n.º 6 (diciembre de 1990): 521–32. http://dx.doi.org/10.1007/bf01191686.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Li, Jiongsheng. "TheL-sharp permutation groups". Science in China Series A: Mathematics 43, n.º 1 (enero de 2000): 22–27. http://dx.doi.org/10.1007/bf02903844.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Anagnostopoulou-Merkouri, Marina, Peter J. Cameron y Enoch Suleiman. "Pre-primitive permutation groups". Journal of Algebra 636 (diciembre de 2023): 695–715. http://dx.doi.org/10.1016/j.jalgebra.2023.09.012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Franchi, Clara. "Abelian sharp permutation groups". Journal of Algebra 283, n.º 1 (enero de 2005): 1–5. http://dx.doi.org/10.1016/j.jalgebra.2004.06.031.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Khashaev, Arthur A. "On the membership problem for finite automata over symmetric groups". Discrete Mathematics and Applications 32, n.º 6 (1 de diciembre de 2022): 383–89. http://dx.doi.org/10.1515/dma-2022-0033.

Texto completo
Resumen
Abstract We consider automata in which transitions are labelled with arbitrary permutations. The language of such an automaton consists of compositions of permutations for all possible admissible computation paths. The membership problem for finite automata over symmetric groups is the following decision problem: does a given permutation belong to the language of a given automaton? We show that this problem is NP-complete. We also propose an efficient algorithm for the case of strongly connected automata.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Vesanen, Ari. "Finite classical groups and multiplication groups of loops". Mathematical Proceedings of the Cambridge Philosophical Society 117, n.º 3 (mayo de 1995): 425–29. http://dx.doi.org/10.1017/s0305004100073278.

Texto completo
Resumen
Let Q be a loop; then the left and right translations La(x) = ax and Ra(x) = xa are permutations of Q. The permutation group M(Q) = 〈La, Ra | a ε Q〉 is called the multiplication group of Q; it is well known that the structure of M(Q) reflects strongly the structure of Q (cf. [1] and [8], for example). It is thus an interesting question, which groups can be represented as multiplication groups of loops. In particular, it seems important to classify the finite simple groups that are multiplication groups of loops. In [3] it was proved that the alternating groups An are multiplication groups of loops, whenever n ≥ 6; in this paper we consider the finite classical groups and prove the following theorems
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Pearson, Mike y Ian Short. "Magic letter groups". Mathematical Gazette 91, n.º 522 (noviembre de 2007): 493–99. http://dx.doi.org/10.1017/s0025557200182130.

Texto completo
Resumen
Certain numeric puzzles, known as ‘magic letters’, each have a finite permutation group associated with them in a natural manner. We describe how the isomorphism type of these permutation groups relates to the structure of the magic letters.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Grech, Mariusz y Andrzej Kisielewicz. "Cyclic Permutation Groups that are Automorphism Groups of Graphs". Graphs and Combinatorics 35, n.º 6 (13 de septiembre de 2019): 1405–32. http://dx.doi.org/10.1007/s00373-019-02096-1.

Texto completo
Resumen
Abstract In this paper we establish conditions for a permutation group generated by a single permutation to be an automorphism group of a graph. This solves the so called concrete version of König’s problem for the case of cyclic groups. We establish also similar conditions for the symmetry groups of other related structures: digraphs, supergraphs, and boolean functions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Burov, Dmitry A. "Subgroups of direct products of groups invariant under the action of permutations on factors". Discrete Mathematics and Applications 30, n.º 4 (26 de agosto de 2020): 243–55. http://dx.doi.org/10.1515/dma-2020-0021.

Texto completo
Resumen
AbstractWe study subgroups of the direct product of two groups invariant under the action of permutations on factors. An invariance criterion for the subdirect product of two groups under the action of permutations on factors is put forward. Under certain additional constraints on permutations, we describe the subgroups of the direct product of a finite number of groups that are invariant under the action of permutations on factors. We describe the subgroups of the additive group of vector space over a finite field of characteristic 2 which are invariant under the coordinatewise action of inversion permutation of nonzero elements of the field.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Gill, Nick y Pablo Spiga. "Binary permutation groups: Alternating and classical groups". American Journal of Mathematics 142, n.º 1 (2020): 1–43. http://dx.doi.org/10.1353/ajm.2020.0000.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Banica, Teodor, Julien Bichon y Sonia Natale. "Finite quantum groups and quantum permutation groups". Advances in Mathematics 229, n.º 6 (abril de 2012): 3320–38. http://dx.doi.org/10.1016/j.aim.2012.02.012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

BRYANT, R. M., L. G. KOVÁCS y G. R. ROBINSON. "TRANSITIVE PERMUTATION GROUPS AND IRREDUCIBLE LINEAR GROUPS". Quarterly Journal of Mathematics 46, n.º 4 (1995): 385–407. http://dx.doi.org/10.1093/qmath/46.4.385.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Heath-Brown, D. R., Cheryl E. Praeger y Aner Shalev. "Permutation groups, simple groups, and sieve methods". Israel Journal of Mathematics 148, n.º 1 (diciembre de 2005): 347–75. http://dx.doi.org/10.1007/bf02775443.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Bowler, Nathan y Thomas Forster. "Normal subgroups of infinite symmetric groups, with an application to stratified set theory". Journal of Symbolic Logic 74, n.º 1 (marzo de 2009): 17–26. http://dx.doi.org/10.2178/jsl/1231082300.

Texto completo
Resumen
It is generally known that infinite symmetric groups have few nontrivial normal subgroups (typically only the subgroups of bounded support) and none of small index. (We will explain later exactly what we mean by small). However the standard analysis relies heavily on the axiom of choice. By dint of a lot of combinatorics we have been able to dispense—largely—with the axiom of choice. Largely, but not entirely: our result is that if X is an infinite set with ∣X∣ = ∣X × X∣ then Symm(X) has no nontrivial normal subgroups of small index. Some condition like this is needed because of the work of Sam Tarzi who showed [4] that, for any finite group G, there is a model of ZF without AC in which there is a set X with Symm(X)/FSymm(X) isomorphic to G.The proof proceeds in two stages. We consider a particularly useful class of permutations, which we call the class of flexible permutations. A permutation of X is flexible if it fixes at least ∣X∣-many points. First we show that every normal subgroup of Symm(X) (of small index) must contain every flexible permutation. This will be theorem 4. Then we show (theorem 7) that the flexible permutations generate Symm(X).
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Praeger, Cheryl E. "Seminormal and subnormal subgroup lattices for transitive permutation groups". Journal of the Australian Mathematical Society 80, n.º 1 (febrero de 2006): 45–64. http://dx.doi.org/10.1017/s144678870001137x.

Texto completo
Resumen
AbstractVarious lattices of subgroups of a finite transitive permutation group G can be used to define a set of ‘basic’ permutation groups associated with G that are analogues of composition factors for abstract finite groups. In particular G can be embedded in an iterated wreath product of a chain of its associated basic permutation groups. The basic permutation groups corresponding to the lattice L of all subgroups of G containing a given point stabiliser are a set of primitive permutation groups. We introduce two new subgroup lattices contained in L, called the seminormal subgroup lattice and the subnormal subgroup lattice. For these lattices the basic permutation groups are quasiprimitive and innately transitive groups, respectively.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

., Haci Aktas. "On Finite Topological Permutation Groups". Journal of Applied Sciences 2, n.º 1 (15 de diciembre de 2001): 60–61. http://dx.doi.org/10.3923/jas.2002.60.61.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Jones, Gareth. "Combinatorial categories and permutation groups". Ars Mathematica Contemporanea 10, n.º 2 (20 de octubre de 2015): 237–54. http://dx.doi.org/10.26493/1855-3974.545.fd5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Neumann, Peter M. "Homogeneity of Infinite Permutation Groups". Bulletin of the London Mathematical Society 20, n.º 4 (julio de 1988): 305–12. http://dx.doi.org/10.1112/blms/20.4.305.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Birszki, Bálint. "ON PRIMITIVE SHARP PERMUTATION GROUPS". Communications in Algebra 30, n.º 6 (19 de junio de 2002): 3013–23. http://dx.doi.org/10.1081/agb-120004005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía