Literatura académica sobre el tema "Permutation groups"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Permutation groups".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Permutation groups"

1

Niemenmaa, Markku. "Decomposition of Transformation Groups of Permutation Machines." Fundamenta Informaticae 10, no. 4 (1987): 363–67. http://dx.doi.org/10.3233/fi-1987-10403.

Texto completo
Resumen
By a permutation machine we mean a triple (Q,S,F), where Q and S are finite sets and F is a function Q × S → Q which defines a permutation on Q for every element from S. These permutations generate a permutation group G and by considering the structure of G we can obtain efficient ways to decompose the transformation group (Q,G). In this paper we first consider the situation where G is half-transitive and after this we show how to use our result in the general non-transitive case.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Burns, J. M., B. Goldsmith, B. Hartley, and R. Sandling. "On quasi-permutation representations of finite groups." Glasgow Mathematical Journal 36, no. 3 (1994): 301–8. http://dx.doi.org/10.1017/s0017089500030901.

Texto completo
Resumen
In [6], Wong defined a quasi-permutation group of degree n to be a finite group G of automorphisms of an n-dimensional complex vector space such that every element of G has non-negative integral trace. The terminology derives from the fact that if G is a finite group of permutations of a set ω of size n, and we think of G as acting on the complex vector space with basis ω, then the trace of an element g ∈ G is equal to the number of points of ω fixed by g. In [6] and [7], Wong studied the extent to which some facts about permutation groups generalize to the quasi-permutation group situation. H
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Bigelow, Stephen. "Supplements of bounded permutation groups." Journal of Symbolic Logic 63, no. 1 (1998): 89–102. http://dx.doi.org/10.2307/2586590.

Texto completo
Resumen
AbstractLet λ ≤ κ be infinite cardinals and let Ω be a set of cardinality κ. The bounded permutation group Bλ(Ω), or simply Bλ, is the group consisting of all permutations of Ω which move fewer than λ points in Ω. We say that a permutation group G acting on Ω is a supplement of Bλ if BλG is the full symmetric group on Ω.In [7], Macpherson and Neumann claimed to have classified all supplements of bounded permutation groups. Specifically, they claimed to have proved that a group G acting on the set Ω is a supplement of Bλ if and only if there exists Δ ⊂ Ω with ∣Δ∣ < λ such that the setwise st
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Tovstyuk, K. D., C. C. Tovstyuk, and O. O. Danylevych. "The Permutation Group Theory and Electrons Interaction." International Journal of Modern Physics B 17, no. 21 (2003): 3813–30. http://dx.doi.org/10.1142/s0217979203021812.

Texto completo
Resumen
The new mathematical formalism for the Green's functions of interacting electrons in crystals is constructed. It is based on the theory of Green's functions and permutation groups. We constructed a new object of permutation groups, which we call double permutation (DP). DP allows one to take into consideration the symmetry of the ground state as well as energy and momentum conservation in every virtual interaction. We developed the classification of double permutations and proved the theorem, which allows the selection of classes of associated double permutations (ADP). The Green's functions a
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Cohen, Stephen D. "Permutation polynomials and primitive permutation groups." Archiv der Mathematik 57, no. 5 (1991): 417–23. http://dx.doi.org/10.1007/bf01246737.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Senashov, Vasily S., Konstantin A. Filippov, and Anatoly K. Shlepkin. "Regular permutations and their applications in crystallography." E3S Web of Conferences 525 (2024): 04002. http://dx.doi.org/10.1051/e3sconf/202452504002.

Texto completo
Resumen
The representation of a group G in the form of regular permutations is widely used for studying the structure of finite groups, in particular, parameters like the group density function. This is related to the increased potential of computer technologies for conducting calculations. The work addresses the problem of calculation regular permutations with restrictions on the structure of the degree and order of permutations. The considered regular permutations have the same nontrivial order, which divides the degree of the permutation. Examples of the application of permutation groups in crystal
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Boy de la Tour, Thierry, and Mnacho Echenim. "On leaf permutative theories and occurrence permutation groups." Electronic Notes in Theoretical Computer Science 86, no. 1 (2003): 61–75. http://dx.doi.org/10.1016/s1571-0661(04)80653-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Cameron, Peter J. "Cofinitary Permutation Groups." Bulletin of the London Mathematical Society 28, no. 2 (1996): 113–40. http://dx.doi.org/10.1112/blms/28.2.113.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Lucchini, A., F. Menegazzo, and M. Morigi. "Generating Permutation Groups." Communications in Algebra 32, no. 5 (2004): 1729–46. http://dx.doi.org/10.1081/agb-120029899.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Kearnes, Keith A. "Collapsing permutation groups." Algebra Universalis 45, no. 1 (2001): 35–51. http://dx.doi.org/10.1007/s000120050200.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Tesis sobre el tema "Permutation groups"

1

Cox, Charles. "Infinite permutation groups containing all finitary permutations." Thesis, University of Southampton, 2016. https://eprints.soton.ac.uk/401538/.

Texto completo
Resumen
Groups naturally occu as the symmetries of an object. This is why they appear in so many different areas of mathematics. For example we find class grops in number theory, fundamental groups in topology, and amenable groups in analysis. In this thesis we will use techniques and approaches from various fields in order to study groups. This is a 'three paper' thesis, meaning that the main body of the document is made up of three papers. The first two of these look at permutation groups which contain all permutations with finite support, the first focussing on decision problems and the second on t
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Hyatt, Matthew. "Quasisymmetric Functions and Permutation Statistics for Coxeter Groups and Wreath Product Groups." Scholarly Repository, 2011. http://scholarlyrepository.miami.edu/oa_dissertations/609.

Texto completo
Resumen
Eulerian quasisymmetric functions were introduced by Shareshian and Wachs in order to obtain a q-analog of Euler's exponential generating function formula for the Eulerian polynomials. They are defined via the symmetric group, and applying the stable and nonstable principal specializations yields formulas for joint distributions of permutation statistics. We consider the wreath product of the cyclic group with the symmetric group, also known as the group of colored permutations. We use this group to introduce colored Eulerian quasisymmetric functions, which are a generalization of Eulerian qua
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Kuzucuoglu, M. "Barely transitive permutation groups." Thesis, University of Manchester, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233097.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Lajeunesse, Lisa (Lisa Marie) Carleton University Dissertation Mathematics and Statistics. "Models and permutation groups." Ottawa, 1996.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Schaefer, Artur. "Synchronizing permutation groups and graph endomorphisms." Thesis, University of St Andrews, 2016. http://hdl.handle.net/10023/9912.

Texto completo
Resumen
The current thesis is focused on synchronizing permutation groups and on graph endo- morphisms. Applying the implicit classification of rank 3 groups, we provide a bound on synchronizing ranks of rank 3 groups, at first. Then, we determine the singular graph endomorphisms of the Hamming graph and related graphs, count Latin hypercuboids of class r, establish their relation to mixed MDS codes, investigate G-decompositions of (non)-synchronizing semigroups, and analyse the kernel graph construction used in the theorem of Cameron and Kazanidis which identifies non-synchronizing transformations wi
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Fawcett, Joanna Bethia. "Bases of primitive permutation groups." Thesis, University of Cambridge, 2013. https://www.repository.cam.ac.uk/handle/1810/252304.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Spiga, Pablo. "P elements in permutation groups." Thesis, Queen Mary, University of London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413152.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

McNab, C. A. "Some problems in permutation groups." Thesis, University of Oxford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382633.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Astles, David Christopher. "Permutation groups acting on subsets." Thesis, University of East Anglia, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280040.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Yang, Keyan. "On Orbit Equivalent Permutation Groups." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1222455916.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Libros sobre el tema "Permutation groups"

1

Passman, Donald S. Permutation groups. Dover Publications, Inc., 2012.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Cameron, Peter J. Oligomorphic permutation groups. Cambridge University Press, 1990.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Cameron, Peter J. Permutation groups. Cambridge University Press, 1999.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Dixon, John D., and Brian Mortimer. Permutation Groups. Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-0731-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Brian, Mortimer, ed. Permutation groups. Springer, 1996.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Charles, Holland W., ed. Ordered groups and infinite permutation groups. Kluwer Academic Publishers, 1996.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

1965-, Bhattacharjee M., ed. Notes on infinite permutation groups. Springer, 1998.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Holland, W. Charles, ed. Ordered Groups and Infinite Permutation Groups. Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-3443-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Bhattacharjee, Meenaxi, Dugald Macpherson, Rögnvaldur G. Möller, and Peter M. Neumann. Notes on Infinite Permutation Groups. Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0092550.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Butler, Gregory, ed. Fundamental Algorithms for Permutation Groups. Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/3-540-54955-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Capítulos de libros sobre el tema "Permutation groups"

1

Camina, Alan, and Barry Lewis. "Permutation Groups." In Springer Undergraduate Mathematics Series. Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-600-9_4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Mazzola, Guerino, Maria Mannone, and Yan Pang. "Permutation Groups." In Computational Music Science. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42937-3_20.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Roman, Steven. "Permutation Groups." In Fundamentals of Group Theory. Birkhäuser Boston, 2011. http://dx.doi.org/10.1007/978-0-8176-8301-6_6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Paulsen, William. "Permutation Groups." In Abstract Algebra. Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9781315370972-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Isaacs, I. "Permutation groups." In Graduate Studies in Mathematics. American Mathematical Society, 2008. http://dx.doi.org/10.1090/gsm/092/08.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Isaacs, I. "Permutation groups." In Graduate Studies in Mathematics. American Mathematical Society, 2009. http://dx.doi.org/10.1090/gsm/100/06.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Khattar, Dinesh, and Neha Agrawal. "Permutation Groups." In Group Theory. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21307-6_4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Kurzweil, Hans, and Bernd Stellmacher. "Permutation Groups." In The Theory of Finite Groups. Springer New York, 2004. http://dx.doi.org/10.1007/0-387-21768-1_4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Birken, Philipp. "Permutation Groups." In Student Solutions Manual, 10th ed. Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003182306-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Tapp, Kristopher. "Permutation Groups." In Symmetry. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-51669-7_6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Permutation groups"

1

Camps-Moreno, Eduardo, Hiram H. López, Eliseo Sarmiento, and Ivan Soprunov. "On the Affine Permutation Group of Certain Decreasing Cartesian Codes." In 2024 IEEE International Symposium on Information Theory (ISIT). IEEE, 2024. http://dx.doi.org/10.1109/isit57864.2024.10619396.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Banerjee, Shuvayan, Sudhansh Peddabomma, Radhendushka Srivastava, James Saunderson, and Ajit Rajwade. "Identification and Correction of Permutation Errors in Compressed Sensing-Based Group Testing." In ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2025. https://doi.org/10.1109/icassp49660.2025.10888147.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Babai, L., E. Luks, and A. Seress. "Permutation groups in NC." In the nineteenth annual ACM conference. ACM Press, 1987. http://dx.doi.org/10.1145/28395.28439.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Babai, L., E. M. Luks, and A. Seress. "Fast management of permutation groups." In [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science. IEEE, 1988. http://dx.doi.org/10.1109/sfcs.1988.21943.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Kabanov, Vladislav, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Graphs and Transitive Permutation Groups." In ICNAAM 2010: International Conference of Numerical Analysis and Applied Mathematics 2010. AIP, 2010. http://dx.doi.org/10.1063/1.3498638.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Banica, Teodor, Julien Bichon, and Benoît Collins. "Quantum permutation groups: a survey." In Noncommutative Harmonic Analysis with Applications to Probability. Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Luks, Eugene M., Ferenc Rákóczi, and Charles R. B. Wright. "Computing normalizers in permutation p-groups." In the international symposium. ACM Press, 1994. http://dx.doi.org/10.1145/190347.190390.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Luks, Eugene M., and Pierre Mckenzie. "Fast parallel computation with permutation groups." In 26th Annual Symposium on Foundations of Computer Science (sfcs 1985). IEEE, 1985. http://dx.doi.org/10.1109/sfcs.1985.26.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Fiat, A., S. Moses, A. Shamir, I. Shimshoni, and G. Tardos. "Planning and learning in permutation groups." In 30th Annual Symposium on Foundations of Computer Science. IEEE, 1989. http://dx.doi.org/10.1109/sfcs.1989.63490.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Egner, Sebastian, and Markus Püschel. "Solving puzzles related to permutation groups." In the 1998 international symposium. ACM Press, 1998. http://dx.doi.org/10.1145/281508.281611.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Permutation groups"

1

Huang, Jonathan, Carlos Guestrin, and Leonidas Guibas. Inference for Distributions over the Permutation Group. Defense Technical Information Center, 2008. http://dx.doi.org/10.21236/ada488051.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Ramm-Granberg, Tynan, F. Rocchio, Catharine Copass, Rachel Brunner, and Eric Nelsen. Revised vegetation classification for Mount Rainier, North Cascades, and Olympic national parks: Project summary report. National Park Service, 2021. http://dx.doi.org/10.36967/nrr-2284511.

Texto completo
Resumen
Field crews recently collected more than 10 years of classification and mapping data in support of the North Coast and Cascades Inventory and Monitoring Network (NCCN) vegetation maps of Mount Rainier (MORA), Olympic (OLYM), and North Cascades (NOCA) National Parks. Synthesis and analysis of these 6000+ plots by Washington Natural Heritage Program (WNHP) and Institute for Natural Resources (INR) staff built on the foundation provided by the earlier classification work of Crawford et al. (2009). These analyses provided support for most of the provisional plant associations in Crawford et al. (2
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!