Artículos de revistas sobre el tema "Permeable reactive barrier"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Permeable reactive barrier.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Permeable reactive barrier".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Thiruvenkatachari, R., S. Vigneswaran y R. Naidu. "Permeable reactive barrier for groundwater remediation". Journal of Industrial and Engineering Chemistry 14, n.º 2 (marzo de 2008): 145–56. http://dx.doi.org/10.1016/j.jiec.2007.10.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Schwarz, Alex O. y Bruce E. Rittmann. "The diffusion-active permeable reactive barrier". Journal of Contaminant Hydrology 112, n.º 1-4 (marzo de 2010): 155–62. http://dx.doi.org/10.1016/j.jconhyd.2009.12.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Oliveira, M., Ana Vera Machado y Regina Nogueira. "Development of Permeable Reactive Barrier for Phosphorus Removal". Materials Science Forum 636-637 (enero de 2010): 1365–70. http://dx.doi.org/10.4028/www.scientific.net/msf.636-637.1365.

Texto completo
Resumen
Permeable reactive barriers were developed for phosphorus removal. The barrier consists in an organic-inorganic hybrid material, which allows water and others species to flow through it, while selectively removes the contaminants. Polyethylene oxide (POE) and aluminium oxide (Al2O3) were used as the organic and the inorganic parts, respectively. The hybrid material was obtained by sol-gel reaction, using aluminium isopropoxide as inorganic percursor in order to attain Al2O3. The hybrid material produced was characterized by FT-IR spectroscopy and thermogravimetry. The previous tests for phosphorus removal have shown the effectiveness capacity of the developed material to remove it.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Banasiak, Laura Joan, Buddhima Indraratna, Glenys Lugg, Udeshini Pathirage, Geoff McIntosh y Neil Rendell. "Permeable reactive barrier rejuvenation by alkaline wastewater". Environmental Geotechnics 2, n.º 1 (febrero de 2015): 45–55. http://dx.doi.org/10.1680/envgeo.13.00122.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Molfetta, Antonio Di y Rajandrea Sethi. "Clamshell excavation of a permeable reactive barrier". Environmental Geology 50, n.º 3 (8 de marzo de 2006): 361–69. http://dx.doi.org/10.1007/s00254-006-0215-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

He, Qianfeng, Shihui Si, Jun Yang y Xiaoyu Tu. "Application of permeable reactive barrier in groundwater remediation". E3S Web of Conferences 136 (2019): 06021. http://dx.doi.org/10.1051/e3sconf/201913606021.

Texto completo
Resumen
As a new in-situ remediation of groundwater, compared with the traditional “pump and treat” technology, the permeable reactive barrier (PRB) has the advantages of low cost, no external power, the small disturbance to groundwater, small secondary pollution and long-term operation, this paper introduces the basic concept of PRB, technical principle, structure type, the principle of active materials selection and mechanisms of remediation, design and installation factors, it provides ideas for further research and application of PRB technology in groundwater remediation projects in China.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Morgan, Lynn A., Don Ficklen y Mary Knowles. "Site characterization to support permeable reactive barrier design". Remediation Journal 15, n.º 4 (2005): 63–71. http://dx.doi.org/10.1002/rem.20060.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Lee, Jejung, Andrew J. Graettinger, John Moylan y Howard W. Reeves. "Directed site exploration for permeable reactive barrier design". Journal of Hazardous Materials 162, n.º 1 (febrero de 2009): 222–29. http://dx.doi.org/10.1016/j.jhazmat.2008.05.026.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Tigue, April Anne, Roy Alvin Malenab y Michael Angelo Promentilla. "A systematic mapping study on the development of permeable reactive barrier for acid mine drainage treatment". MATEC Web of Conferences 268 (2019): 06019. http://dx.doi.org/10.1051/matecconf/201926806019.

Texto completo
Resumen
Acid mine drainage is a result of exposure of sulfide ore and minerals to water and oxygen. This environmental pollutant has been considered the second biggest environmental problem after global warming. On the other hand, permeable reactive barrier is an emerging remediation technology which can be used to treat acid mine drainage. However, the effectiveness of this proposed remediation technology greatly depends on the reactive media. Also, treatment of acid mine drainage using permeable reactive barrier is still in the infancy stage, and long-term performance is still unknown. Hence, this study was conducted to identify what have been studied, addressed and what are currently the biggest challenges and limitations on the use of permeable reactive barrier for acid mine drainage treatment. Through systematic mapping approach, the results have shown that the reactive media used in permeable reactive barrier can be categorized into five namely iron-based, organic-based, inorganic minerals-based, industrial waste-based, and combined media. The data revealed that majority of the papers which is about 40% use combined media as the reactive substrate. The future direction is toward the use of combined media as a reactive material for AMD treatment, for instance, use of geopolymer with mine tailings and silts as reactive media in combination with organic-based media
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Richards, Peter. "Seven‐year performance evaluation of a permeable reactive barrier". Remediation Journal 18, n.º 3 (marzo de 2008): 63–78. http://dx.doi.org/10.1002/rem.20172.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Muegge, John P. y Paul W. Hadley. "An evaluation of permeable reactive barrier projects in California". Remediation Journal 20, n.º 1 (diciembre de 2009): 41–57. http://dx.doi.org/10.1002/rem.20228.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Ludwig, Ralph D., Rick G. McGregor, David W. Blowes, Shawn G. Benner y Keith Mountjoy. "A Permeable Reactive Barrier for Treatment of Heavy Metals". Ground Water 40, n.º 1 (enero de 2002): 59–66. http://dx.doi.org/10.1111/j.1745-6584.2002.tb02491.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Vesela, Lenka, Jan Nemecek, Martina Siglova y Martin Kubal. "The biofiltration permeable reactive barrier: Practical experience from Synthesia". International Biodeterioration & Biodegradation 58, n.º 3-4 (octubre de 2006): 224–30. http://dx.doi.org/10.1016/j.ibiod.2006.06.013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Grajales-Mesa, S. Johana, Grzegorz Malina, Ewa Kret y Tadeusz Szklarczyk. "Designing a permeable reactive barrier to treat TCE contaminated groundwater: Numerical modelling". Tecnología y ciencias del agua 11, n.º 3 (1 de mayo de 2020): 78–106. http://dx.doi.org/10.24850/j-tyca-2020-03-03.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Morrison, Stan. "Performance Evaluation of a Permeable Reactive Barrier Using Reaction Products as Tracers". Environmental Science & Technology 37, n.º 10 (mayo de 2003): 2302–9. http://dx.doi.org/10.1021/es0209565.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Zawierucha, Iwona y Anna Nowik-Zajac. "Evaluation of permeable sorption barriers for removal of Cd(II) and Zn(II) ions from contaminated groundwater". Water Science and Technology 80, n.º 3 (1 de agosto de 2019): 448–57. http://dx.doi.org/10.2166/wst.2019.288.

Texto completo
Resumen
Abstract In the present study, continuous-flow column experiments (using glass column, Tygon tubing, and peristaltic pump Manostat Carter) were conducted to investigate the performance of permeable sorption barriers for the removal of cadmium and zinc from synthetic groundwater. Zeolite, ion-exchange resin and granular activated carbon as reactive materials were used. The effectiveness and stability of reactive materials were studied by monitoring of changes of metal ions concentration and selected background anions and cations concentration in groundwater during its flow through columns. Results showed that ion exchange resin was the most effective material of permeable reactive barrier (PRB). Performance of resin barrier remained effective (>99.5% metal ions removal) for the time corresponding to on average of about 10,000 min. The high efficiency of ion-exchange resin in PRB for removal of heavy metals from groundwater was coupled with its reactivity and long barrier lifetime. The breakthroughs in the column tests on activated carbon and zeolite using synthetic groundwater occurred much earlier as compared to resin. Therefore, the system using resin requires smaller amount to treat a given volume of groundwater as compared to other materials. Moreover, the presence of other ions did not impact on activity and permeability of barrier filled with resin.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Indraratna, Buddhima, Punyama Udeshini Pathirage y Laura Joan Banasiak. "Remediation of acidic groundwater by way of permeable reactive barrier". Environmental Geotechnics 4, n.º 4 (agosto de 2017): 284–98. http://dx.doi.org/10.1680/envgeo.14.00014.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Kennedy, Lonnie G. y Jess W. Everett. "Field application of biogeochemical reductive dechlorination by permeable reactive barrier". International Journal of Environment and Waste Management 14, n.º 4 (2014): 323. http://dx.doi.org/10.1504/ijewm.2014.066590.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Richards, Peter. "Construction of a permeable reactive barrier in a residential neighborhood". Remediation Journal 12, n.º 4 (septiembre de 2002): 65–79. http://dx.doi.org/10.1002/rem.10046.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Golab, Alexandra N., Buddhima Indraratna, Mark A. Peterson y Stephen Hay. "Design of a Permeable Reactive Barrier to Remediate Acidic Groundwater". ASEG Extended Abstracts 2006, n.º 1 (diciembre de 2006): 1–3. http://dx.doi.org/10.1071/aseg2006ab051.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Hosseini, S. Mossa, B. Ataie-Ashtiani y M. Kholghi. "Bench-Scaled Nano-Fe0 Permeable Reactive Barrier for Nitrate Removal". Ground Water Monitoring & Remediation 31, n.º 4 (19 de julio de 2011): 82–94. http://dx.doi.org/10.1111/j.1745-6592.2011.01352.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Slater, Lee y Andrew Binley. "Evaluation of permeable reactive barrier (PRB) integrity using electrical imaging methods". GEOPHYSICS 68, n.º 3 (mayo de 2003): 911–21. http://dx.doi.org/10.1190/1.1581043.

Texto completo
Resumen
The permeable reactive barrier (PRB) is a promising in‐situ technology for treatment of hydrocarbon‐contaminated groundwater. A PRB is typically composed of granular iron which degrades chlorinated organics into potentially nontoxic dehalogenated organic compounds and inorganic chloride. Geophysical methods may assist assessment of in‐situ barrier integrity and evaluation of long‐term barrier performance. The highly conductive granular iron makes the PRB an excellent target for conductivity imaging methods. In addition, electrochemical storage of charge at the iron–solution interface generates an impedance that decreases with frequency. The PRB is thus a potential induced polarization (IP) target. Surface and cross‐borehole electrical imaging (conductivity and IP) was conducted at a PRB installed at the U.S. Department of Energy's Kansas City plant. Poor signal strength (25% of measurements exceeding 8% reciprocal error) and insensitivity at depth, which results from current channeling in the highly conductive iron, limited surface imaging. Crosshole 2D and 3D electrical measurements were highly effective at defining an accurate, approximately 0.3‐m resolution, cross‐sectional image of the barrier in‐situ. Both the conductivity and IP images reveal the barrier geometry. Crosshole images obtained for seven panels along the barrier suggest variability in iron emplacement along the installation. On five panels the PRB structure is imaged as a conductive feature exceeding 1 S/m. However, on two panels the conductivity in the assumed vicinity of the PRB is less than 1 S/m. The images also suggest variability in the integrity of the contact between the PRB and bedrock. This noninvasive, in‐situ evaluation of barrier geometry using conductivity/IP has broad implications for the long‐term monitoring of PRB performance as a method of hydrocarbon removal.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Xue, Fengjiao, Yujie Yan, Ming Xia, Faheem Muhammad, Lin Yu, Feng Xu, YanChyuan Shiau, Dongwei Li y Binquan Jiao. "Electro-kinetic remediation of chromium-contaminated soil by a three-dimensional electrode coupled with a permeable reactive barrier". RSC Advances 7, n.º 86 (2017): 54797–805. http://dx.doi.org/10.1039/c7ra10913j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Ribeiro, André, André Mota, Margarida Soares, Carlos Castro, Jorge Araújo y Joana Carvalho. "Lead (II) Removal from Contaminated Soils by Electrokinetic Remediation Coupled with Modified Eggshell Waste". Key Engineering Materials 777 (agosto de 2018): 256–61. http://dx.doi.org/10.4028/www.scientific.net/kem.777.256.

Texto completo
Resumen
Electrokinetic remediation deserves particular attention in soil treatment due to its peculiar advantages, including the capability of treating fine and low permeability materials, and achieving consolidation, dewatering and removal of salts and inorganic contaminants like heavy metals in a single stage. In this study, the remediation of artificially lead (II) contaminated soil by electrokinetic process, coupled with Eggshell Inorganic Fraction Powder (EGGIF) permeable reactive barrier (PRB), was investigated. An electric field of 2 V cm-1was applied and was used an EGGIF/soil ratio of 30 g kg-1 of contaminated soil for the preparation of the permeable reactive barrier (PRB) in each test. It was obtained high removal rates of lead in both experiments, especially near the cathode. In the normalized distance to cathode of 0.2 it was achieved a maximum removal rate of lead (II) of 68, 78 and 83% in initial lead (II) concentration of 500 mg-1, 200 mg-1 and 100 mg-1, respectively. EGGIF (Eggshell Inorganic Fraction) proved that can be used as permeable reactive barrier (PRB) since in all the performed tests were achieved adsorptions yields higher than 90%.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Fronczyk, Joanna, Katarzyna Pawluk y Marta Michniak. "Application of permeable reactive barriers near roads for chloride ions removal". Annals of Warsaw University of Life Sciences - SGGW. Land Reclamation 42, n.º 2 (1 de enero de 2010): 249–59. http://dx.doi.org/10.2478/v10060-008-0083-5.

Texto completo
Resumen
Application of permeable reactive barriers near roads for chloride ions removal One of the most critical sources of pollutants are road run-offs. Road run-off is a complex mixture of toxicants e.g. heavy metals, de-icing agents, organic compounds and water suspensions of solid substances. One of the most negative impact on the environment has sodium chloride which is used as de-icing agent. In the case of incorrect environment protection in the vicinity of roads pollutants may migrate to groundwater causing hazard to sources of potable water. One of the methods to prevent the migration of pollutants to groundwater is imposing the flow of polluted water through a reactive material filling a permeable reactive barrier (PRB). This paper examines the feasibility of selected reactive materials for the reduction chlorides concentration in road run-offs. Four different reactive materials: zero valent-iron, activated carbon, zeolite and geza rock have been chosen for studies. The tests results indicated that the most popular reactive materials used in PRB technology, activated carbon and zero-valent iron, removed exhibited the highest efficiency in chloride ions removal. Moreover, the composition of road run-off in samples collected along roads in Warsaw was determinated.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Kim, Young-Hun y Myung-Chul Kim. "Development of Activity Enhanced Zero Valent Metals for Permeable Reactive Barrier". Journal of Environmental Science International 12, n.º 2 (1 de febrero de 2003): 201–5. http://dx.doi.org/10.5322/jes.2003.12.2.201.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Chiemchaisri, Chart, Wilai Chiemchaisri y Chayanid Witthayapirom. "Remediation of MSW landfill leachate by permeable reactive barrier with vegetation". Water Science and Technology 71, n.º 9 (10 de marzo de 2015): 1389–97. http://dx.doi.org/10.2166/wst.2015.111.

Texto completo
Resumen
This research was conducted to investigate in situ treatment of leachate by pilot-scale permeable reactive barrier (PRB) with vegetation. Two different types of PRB media, with and without the presence of ferric chloride sludge, for the removal of pollutants were examined. The composite media of PRB comprised a clay and sand mixture of 40:60%w/w (system 1) and a clay, ferric chloride sludge and sand mixture of 30:10:60%w/w (system 2). The system was operated at a hydraulic loading rate of 0.028 m3/m2.d and hydraulic retention time of 10 days. The results showed that the performance of system 2 was better in terms of pollutant removal efficiencies, with average biochemical oxygen demand, chemical oxygen demand and total Kjeldahl nitrogen removals of 76.1%, 68.5% and 73.5%, respectively. Fluorescence excitation-emission matrix analyses of water samples and sequential extraction of PRB media suggested the removal of humic substances through the formation of iron–organic complex. Greenhouse gas (GHG) emissions during the treatment of PRB were 8.2–52.1 mgCH4/m2.d, 69.1–601.8 mgCO2/m2.d and 0.04–0.99 mgN2O/m2.d. The use of system 2 with vegetation resulted in lower GHG emissions. The results show that PRB with vegetation could be used as a primary treatment for leachate from closed landfill sites.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Moraci, Nicola, Stefania Bilardi y Paolo S. Calabrò. "Fe0/pumice mixtures: from laboratory tests to permeable reactive barrier design". Environmental Geotechnics 4, n.º 4 (agosto de 2017): 245–56. http://dx.doi.org/10.1680/jenge.15.00002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Serrenho, A., O. Fenton, M. Rodgers y M. G. Healy. "Laboratory study of a denitrification system using a permeable reactive barrier". Advances in Animal Biosciences 1, n.º 1 (abril de 2010): 88. http://dx.doi.org/10.1017/s2040470010002311.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Morrison, Stan J., Paul S. Mushovic y Preston L. Niesen. "Early Breakthrough of Molybdenum and Uranium in a Permeable Reactive Barrier". Environmental Science & Technology 40, n.º 6 (marzo de 2006): 2018–24. http://dx.doi.org/10.1021/es052128s.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Courcelles, Benoît, Arezou Modaressi-Farahmand-Razavi, Daniel Gouvenot y Annette Esnault-Filet. "Influence of Precipitates on Hydraulic Performance of Permeable Reactive Barrier Filters". International Journal of Geomechanics 11, n.º 2 (abril de 2011): 142–51. http://dx.doi.org/10.1061/(asce)gm.1943-5622.0000098.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Ono, Yusaku, Mikio Kawasaki, Yoichi Watanabe, Masato Yamada, Kazuto Endo y Yoshiro Ono. "Horizontal Permeable Reactive Barrier for Improving the Water Quality within Landfills". Journal of the Japan Society of Waste Management Experts 19, n.º 3 (2008): 197–211. http://dx.doi.org/10.3985/jswme.19.197.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Van Nooten, Thomas, Dirk Springael y Leen Bastiaens. "Microbial Community Characterization in a Pilot-Scale Permeable Reactive Iron Barrier". Environmental Engineering Science 27, n.º 3 (marzo de 2010): 287–92. http://dx.doi.org/10.1089/ees.2009.0271.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Bartlett, T. R. y S. J. Morrison. "Tracer Method to Determine Residence Time in a Permeable Reactive Barrier". Ground Water 47, n.º 4 (julio de 2009): 598–604. http://dx.doi.org/10.1111/j.1745-6584.2009.00544.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Johnson, R. L., R. B. Thoms, R. O’Brien Johnson, J. T. Nurmi y P. G. Tratnyek. "Mineral Precipitation Upgradient from a Zero-Valent Iron Permeable Reactive Barrier". Ground Water Monitoring & Remediation 28, n.º 3 (junio de 2008): 56–64. http://dx.doi.org/10.1111/j.1745-6592.2008.00203.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Mumford, K. A., J. L. Rayner, I. Snape y G. W. Stevens. "Hydraulic performance of a permeable reactive barrier at Casey Station, Antarctica". Chemosphere 117 (diciembre de 2014): 223–31. http://dx.doi.org/10.1016/j.chemosphere.2014.06.091.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Yang, Ji, Yuling Guo, Decai Xu, Limei Cao y Jinping Jia. "A controllable Fe0–C permeable reactive barrier for 1,4-dichlorobenzene dechlorination". Chemical Engineering Journal 203 (septiembre de 2012): 166–73. http://dx.doi.org/10.1016/j.cej.2012.07.031.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Folch, Albert, Marcel Vilaplana, Leila Amado, Teresa Vicent y Glòria Caminal. "Fungal permeable reactive barrier to remediate groundwater in an artificial aquifer". Journal of Hazardous Materials 262 (noviembre de 2013): 554–60. http://dx.doi.org/10.1016/j.jhazmat.2013.09.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Schwarz, Alex y Norma Pérez. "Long-term operation of a permeable reactive barrier with diffusive exchange". Journal of Environmental Management 284 (abril de 2021): 112086. http://dx.doi.org/10.1016/j.jenvman.2021.112086.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Meng, Ruihong, Tan Chen, Yaxin Zhang, Wenjing Lu, Yanting Liu, Tianchu Lu, Yanjun Liu y Hongtao Wang. "Development, modification, and application of low-cost and available biochar derived from corn straw for the removal of vanadium(v) from aqueous solution and real contaminated groundwater". RSC Advances 8, n.º 38 (2018): 21480–94. http://dx.doi.org/10.1039/c8ra02172d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Peng, Shengjie, Xiaodong Wang y Xiaohui Zhang. "Research progress of in-situ remediation of polluted soil and groundwater by electrokinetic and permeable reaction barrier". E3S Web of Conferences 143 (2020): 02043. http://dx.doi.org/10.1051/e3sconf/202014302043.

Texto completo
Resumen
The combination of electrokinetic remediation and permeable reactive barrier (EK-PRB combined remediation technology) is a new green technology for in-situ removal of soil and groundwater pollutants. This technology combines the advantages of electrokinetic remediation and permeable reactive barrier technology, and can deal with different types of organic and inorganic pollutants. It has the characteristics of convenient installation, simple operation, no secondary pollution, etc., and has broad development and application prospect. This paper introduces the technical principle of EK-PRB, summarizes the latest research results on the remediation of heavy metal, organic matter and nitrate contaminated soil and groundwater by the electrokinetic remediation and PRB. Finally,the technical problems of combinated remediation were pointed out, and development and application direction of this technology was noted.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Seethamraju, Sindhu, Praveen C. Ramamurthy y Giridhar Madras. "Reactive interlayer based ultra-low moisture permeable membranes for organic photovoltaic encapsulation". Physical Chemistry Chemical Physics 17, n.º 35 (2015): 23165–72. http://dx.doi.org/10.1039/c5cp04255k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Cui, Kang Ping y Ben Shan Sun. "Removal of BTEX Using Adsorptive Biological Reactive Barrier". Advanced Materials Research 1092-1093 (marzo de 2015): 897–902. http://dx.doi.org/10.4028/www.scientific.net/amr.1092-1093.897.

Texto completo
Resumen
Adsorptive biological reactive barrier comprising medium sand-bentonite-microorganism for removing simulated groundwater BTEX (benzene, toluene, ethyl benzene, xylene) of different concentrations has been investigated with the variance of filling media ratio, and the dependence of BTEX removal efficiency in groundwater on electron acceptor was also studied through adding nitrate. The results show that the optimum volume ratio of bentonite-medium sand is 20:80, with a permeable reactive barrier permeability coefficient of 2.01 × 10-5 m/s and effective porosity of 16.71%. The addition of nitrate to biological reactive barrier stabilized BTEX removals under different concentrations, comparatively, while the control group without nitrate exhibited volatile BTEX removal efficiency. Under conditions of influent concentrations of 6, 8 and 10 mg/L, the BETX removal rates of biological reactive barrier with/without the addition of nitrate and the control group are about 94%/91%, 96%/90%, and 97%/87%, respectively. The adsorptive biological reactive barrier shows significant performance on BTEX removal, especially with the aid of nitrate additive.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Mieles, John y Hongbin Zhan. "Analytical solutions of one-dimensional multispecies reactive transport in a permeable reactive barrier-aquifer system". Journal of Contaminant Hydrology 134-135 (junio de 2012): 54–68. http://dx.doi.org/10.1016/j.jconhyd.2012.04.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

NAKASHIMA, Makoto y Masanori NEGISHI. "Long-term performance evaluation of permeable reactive barrier using zero-valent iron". Journal of Groundwater Hydrology 51, n.º 4 (2009): 331–47. http://dx.doi.org/10.5917/jagh.51.331.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

SOEJIMA, Takamichi, Hiroshi TERAO, Masako ITOH y Satoshi IMAMURA. "Long term remediation effects of permeable reactive barrier for nitrate contaminated groundwater". Journal of Groundwater Hydrology 54, n.º 3 (2012): 139–50. http://dx.doi.org/10.5917/jagh.54.139.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Cai, Chang Feng, Fu Zhang Qi, Xiao Liang Lin y Lin Jiang. "Treatment of Simulated Acid Mine Drainage by Permeable Reactive Barrier: Column Study". Advanced Materials Research 989-994 (julio de 2014): 966–69. http://dx.doi.org/10.4028/www.scientific.net/amr.989-994.966.

Texto completo
Resumen
Three polyvinyl chloride (PVC) columns filled with different ratios of reactive media, ceramsite and corncob, were conducted to assess the treatment performance of simulated acid mine drainage (AMD). The results indicated that the columns could effectively remove sulfate and metal ions from AMD with the removal efficiency of 57.7% and 96.5% respectively. The removal efficiency decreased with the increasing inlet velocity and at the same sample ports the sulfate and metal ions concentrations at the velocity of 1 ml/min were lower than that at the velocity of 2ml/min and 3ml/min.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Mumford, K. A., S. M. Powell, J. L. Rayner, G. Hince, I. Snape y G. W. Stevens. "Evaluation of a permeable reactive barrier to capture and degrade hydrocarbon contaminants". Environmental Science and Pollution Research 22, n.º 16 (23 de abril de 2015): 12298–308. http://dx.doi.org/10.1007/s11356-015-4438-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Zhao, Shuning, Li Fan, Mingyuan Zhou, Xuefeng Zhu y Xiuli Li. "Remediation of Copper Contaminated Kaolin by Electrokinetics Coupled with Permeable Reactive Barrier". Procedia Environmental Sciences 31 (2016): 274–79. http://dx.doi.org/10.1016/j.proenv.2016.02.036.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Guerin, Turlough F., Stuart Horner, Terry McGovern y Brent Davey. "An application of permeable reactive barrier technology to petroleum hydrocarbon contaminated groundwater". Water Research 36, n.º 1 (enero de 2002): 15–24. http://dx.doi.org/10.1016/s0043-1354(01)00233-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía