Literatura académica sobre el tema "Periodontal ligament Anatomy"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Periodontal ligament Anatomy".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Periodontal ligament Anatomy"

1

Becker, J., D. Schuppan, J. P. Rabanus, R. Rauch, U. Niechoy y H. R. Gelderblom. "Immunoelectron microscopic localization of collagens type I, V, VI and of procollagen type III in human periodontal ligament and cementum." Journal of Histochemistry & Cytochemistry 39, n.º 1 (enero de 1991): 103–10. http://dx.doi.org/10.1177/39.1.1983870.

Texto completo
Resumen
We examined the ultrastructural localization of collagens Type I, V, VI and of procollagen Type III in decalcified and prefixed specimens of the periodontal ligament and cementum, by immunoelectron microscopy using ultra-thin cryostat sections. Immunostaining for collagen Type I was pronounced on the major cross-striated fibrils entering cementum and in cementum proper, whereas staining for procollagen Type III was almost exclusively observed on the major fibrils in the periodontal ligament situated more remote from cementum. Reactivity for collagen Type V was limited to aggregated, unbanded filamentous material of about 12 nm diameter that was found mainly in larger spaces between bundles of cross-striated collagen fibrils and occasionally on single microfibrils that apparently originated from the ends of the major collagen fibrils, which may support the concept of this collagen as a component of core fibrils. Collagen Type VI was present as microfilaments appearing to interconnect single cross-striated fibrils. In the densely packed fibril bundles of the periodontal ligament, no collagen type VI was detected. Neither Type V or Type VI collagen was observed in cementum.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Häkkinen, L., O. Oksala, T. Salo, F. Rahemtulla y H. Larjava. "Immunohistochemical localization of proteoglycans in human periodontium." Journal of Histochemistry & Cytochemistry 41, n.º 11 (noviembre de 1993): 1689–99. http://dx.doi.org/10.1177/41.11.8409375.

Texto completo
Resumen
Proteoglycans (PGs) are extracellular and cell surface-associated macromolecules that regulate cell adhesion, cell growth, matrix formation, and bind growth factors. In this work we studied the distribution of core proteins of four PGs (decorin, biglycan, a large molecular weight PG, and CD44) in human gingiva and periodontal ligament by immunohistochemical staining of frozen tissue sections with specific antibodies. Decorin, a major PG of this tissue, was localized on collagen fiber bundles in the gingival and periodontal connective tissues. Staining for decorin was most intense at the subepithelial region. Biglycan was a minor PG component of the human periodontium, showing some accumulation in connective tissue under the oral epithelium. At the immunohistochemical level, biglycan appeared to form fine filament-like structures on extracellular matrix fibers. Localization of large molecular weight PG differed from that of decorin and biglycan. It was concentrated in deep connective tissue areas of the gingiva and in the periodontal ligament, and was only weakly present at the subepithelial region. CD44 was mainly concentrated in cell-cell contact areas of basal and spinous layers of oral epithelium. In the connective tissue of gingiva and periodontal ligament, CD44 was localized on fibroblast cell surfaces. Connective tissue area under the junctional epithelium contained relatively small amounts of PGs. The results indicate that different parts of human periodontium contain a typical variety of PGs, suggesting a specific function for each PG species in the location at which they accumulate.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

de Jong, T., A. D. Bakker, V. Everts y T. H. Smit. "The intricate anatomy of the periodontal ligament and its development: Lessons for periodontal regeneration". Journal of Periodontal Research 52, n.º 6 (21 de junio de 2017): 965–74. http://dx.doi.org/10.1111/jre.12477.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Sawada, Takashi, Yuu Sugawara, Tomohiro Asai, Natsuko Aida, Takaaki Yanagisawa, Kazumasa Ohta y Sadayuki Inoue. "Immunohistochemical Characterization of Elastic System Fibers in Rat Molar Periodontal Ligament". Journal of Histochemistry & Cytochemistry 54, n.º 10 (16 de junio de 2006): 1095–103. http://dx.doi.org/10.1369/jhc.5a6905.2006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Abuduwali, Nuersailike, Stefan Lossdörfer, Jochen Winter, Michael Wolf, Werner Götz y Andreas Jäger. "Autofluorescent characteristics of human periodontal ligament cells in vitro". Annals of Anatomy - Anatomischer Anzeiger 195, n.º 5 (octubre de 2013): 449–54. http://dx.doi.org/10.1016/j.aanat.2013.03.007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

McCulloch, C. A. G. "Progenitor cell populations in the periodontal ligament of mice". Anatomical Record 211, n.º 3 (marzo de 1985): 258–62. http://dx.doi.org/10.1002/ar.1092110305.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Cho, Moon-Il y Philias R. Garant. "3H-mannose utilization by fibroblasts of the periodontal ligament". Anatomical Record 218, n.º 1 (mayo de 1987): 5–13. http://dx.doi.org/10.1002/ar.1092180103.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Oehmke, Matthias J., Christopher R. C. Schramm, Erich Knolle, Nathalie Frickey, Thomas Bernhart y Hans-Joachim Oehmke. "Age-dependent changes of the periodontal ligament in rats". Microscopy Research and Technique 63, n.º 4 (2004): 198–202. http://dx.doi.org/10.1002/jemt.20027.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Nagai, Nobuhiro, Ayumi Hirakawa, Nao Otani y Masanobu Munekata. "Development of Tissue-Engineered Human Periodontal Ligament Constructs with Intrinsic Angiogenic Potential". Cells Tissues Organs 190, n.º 6 (2009): 303–12. http://dx.doi.org/10.1159/000213247.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Hirashima, Shingo, Tomonoshin Kanazawa, Keisuke Ohta y Kei-ichiro Nakamura. "Three-dimensional ultrastructural imaging and quantitative analysis of the periodontal ligament". Anatomical Science International 95, n.º 1 (10 de septiembre de 2019): 1–11. http://dx.doi.org/10.1007/s12565-019-00502-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Periodontal ligament Anatomy"

1

Ashworth, Jonathan F. "Immunohistochemical study of marmoset periodontal ligament microvasculature : a confocal laser scanning microscopic study". Title page, contents and summary only, 1999. http://web4.library.adelaide.edu.au/theses/09DM/09dma831.pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Gallardo, Venegas Camila. "Efecto del envejecimiento en la proporción de células troncales de la pulpa dental y del ligamento periodontal de ratones". Tesis, Universidad de Chile, 2017. http://repositorio.uchile.cl/handle/2250/148043.

Texto completo
Resumen
Trabajo de Investigación Requisito para optar al Título de Cirujano Dentista
Introducción El envejecimiento es un proceso fisiológico que genera una disminución en la capacidad funcional de los tejidos. Una de las principales hipótesis desarrolladas para explicar este fenómeno, postula que una disminución en el número y/o actividad de las células troncales a lo largo del tiempo, induciría una declinación en la capacidad del individuo para mantener la homeostasis. Actualmente, se ha descrito una reducción en el número de células troncales de múltiples tejidos durante el envejecimiento. Sin embargo, en los tejidos dentarios la evidencia disponible es escasa. Es por esto que el objetivo de este trabajo es determinar el efecto del envejecimiento en el porcentaje de células troncales de la pulpa dental y del ligamento periodontal. Para ello, se utilizará STRO-1 y CD146, dos marcadores de MSC en médula ósea, pulpa dental y ligamento periodontal que son sensibles a la edad del individuo, ya que se ha descrito que su expresión es mayor en células aisladas de pacientes jóvenes que en células aisladas de pacientes viejos. Materiales y métodos Maxilares superiores de ratones de 2, 14 y 18 meses fueron fijados y desmineralizados. Se obtuvieron secciones histológicas de 5μm, algunas de las cuales fueron destinadas para tinción histológica con Tricrómico de Masson y otras para inmunohistoquímica de fluorescencia con anticuerpos primarios STRO1 y CD146 y tinción de ADN con Hoechst. Se cuantificaron las células positivas para STRO-1 o CD146 en relación al total de células. Los datos se analizaron mediante la prueba no paramétrica Mann Whitney, considerándose diferencias significativas cuando p ≤ 0,05. Resultados El porcentaje de células positivas para STRO-1 en relación al total de células, fue disminuyendo a medida que aumenta la edad, tanto en la pulpa dental como en el ligamento periodontal. En la pulpa dental se obtuvieron valores de 8,63 ± 2,68% en el grupo de 2 meses, 4,56 ± 3,83% en el grupo de 14 meses y 2,64 ± 2,18% en el grupo de 18 meses. Mientras que en el ligamento periodontal fue de 11,43 ± 4,17% en el grupo de 2 meses, 6,94 ± 5,7% en el de 14 meses y 4,5 ± 2,47 % en el grupo 18 meses. El porcentaje de células positivas para CD146, en relación al total de células, fue disminuyendo a medida que aumenta la edad, tanto en la pulpa dental como en el ligamento periodontal. En la pulpa dental se obtuvieron valores de 9,33 ± 4,03% en el grupo de 2 meses, 4,83 ± 3,91% en el de 14 meses y 3,12 ± 2,72% en el de 18 meses. Mientras que en el ligamento periodontal fue de 11,09 ± 4,06% en el grupo de 2 meses, 6,59 ± 3,66% en el de 14 meses y 4,63 ± 3,11% en el de 18 meses. Conclusiones El porcentaje de células positivas para STRO-1 y CD146 en la pulpa dental y ligamento periodontal, disminuye a medida que aumenta la edad del ratón.
Adscrito a Proyecto FONDECYT 111400064 (MC)
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Periodontal ligament Anatomy"

1

Atkinson, Martin E. "Radiological anatomy of the oral cavity". En Anatomy for Dental Students. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780199234462.003.0040.

Texto completo
Resumen
The radiographs most frequently taken in general dental practice are of the teeth and their immidiate supporting tissues for detection of dental caries or assessment of bone loss in periodontal disease. Intraoral radiographs are taken by placing the X-ray-sensitive film or receptor in the mouth close to the teeth being investigated. Extraoral radiographs use larger films or receptors positioned externally and produce a view of the entire dentition and its supporting structures on a single film; they are used to ascertain the state of development of the dentitions prior to orthodontic treatment, for example. Dental panoramic tomographs (DPTs) are the most frequent extraoral radiographs. A radiograph is a negative photographic record. Dense structures such as bone are designated as radio-opaque; they absorb some X-rays and appear white on radiographs. More X-rays pass through less dense radiolucent structures such as air-filled cavities which show up as black areas. The contrast between different tissues of the structures which the X-ray beam passes through is determined by their radiodensity which, in turn, is largely due to their content of metallic elements. Calcium and iron are the prevalent heavy metals in the body. Calcium is combined with phosphate to form hydroxyapatite crystals in bones and mineralized tissues in teeth. Iron is present in haemoglobin in blood, but only large concentrations of blood, such as those found within the heart chambers, show up on X-rays. In sequence from densest to most lucent, the radiodensity of the dental and periodontal tissues are: enamel, dentine, cementum, compact bone, cancellous bone, demineralized carious enamel and dentine, dental soft tissues such as pulp and periodontal ligament, and air; gold and silver–mercury amalgam metallic restorative materials are even denser than enamel. A radiograph is a two-dimensional representation of a three-dimensional situation. The orientation of anatomical structures relative to the X-ray beam is a major factor determining their appearance on the film. For example, a beam travelling through the long axis of a radiodense structure will produce a whiter image on the film than one passing through its shorter axis because more X-rays are absorbed; the structure will also have a different shape.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía