Literatura académica sobre el tema "Percutaneous ablation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Percutaneous ablation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Percutaneous ablation"
Haanschoten, Danielle M., Ahmet Adiyaman, Jaap Jan J. Smit, Peter Paul H. M. Delnoy, Anand R. Ramdat Misier, Fabiano Porta, Robert P. H. Storm van Leeuwen y Arif Elvan. "Hybrid Ventricular Tachycardia Ablation after Failed Percutaneous Endocardial and Epicardial Ablation". Cardiology 145, n.º 2 (8 de noviembre de 2019): 88–94. http://dx.doi.org/10.1159/000503251.
Texto completoKurup, A., Matthew Callstrom y Michael Moynagh. "Thermal Ablation of Bone Metastases". Seminars in Interventional Radiology 35, n.º 04 (octubre de 2018): 299–308. http://dx.doi.org/10.1055/s-0038-1673422.
Texto completoHui, Terrence CH, Justin Kwan y Uei Pua. "Advanced Techniques in the Percutaneous Ablation of Liver Tumours". Diagnostics 11, n.º 4 (24 de marzo de 2021): 585. http://dx.doi.org/10.3390/diagnostics11040585.
Texto completoAlşalaldeh, Mohammad. "A right atrial arteriovenous hemangioma excision under a beating heart after percutaneous catheter cardiac ablation". Cardiovascular Surgery and Interventions 9, n.º 2 (7 de julio de 2022): 129–31. http://dx.doi.org/10.5606/e-cvsi.2022.1272.
Texto completoDumolard, Lucile, Julien Ghelfi, Gael Roth, Thomas Decaens y Zuzana Macek Jilkova. "Percutaneous Ablation-Induced Immunomodulation in Hepatocellular Carcinoma". International Journal of Molecular Sciences 21, n.º 12 (20 de junio de 2020): 4398. http://dx.doi.org/10.3390/ijms21124398.
Texto completoGupta, Amit, Besma Musaddaq, Conrad von Stempel y Shahzad Ilyas. "Percutaneous Renal Ablation". Seminars in Ultrasound, CT and MRI 41, n.º 4 (agosto de 2020): 351–56. http://dx.doi.org/10.1053/j.sult.2020.05.004.
Texto completoHe, Xiaofeng, Yueyong Xiao, Xiao Zhang, Peng Du, Xin Zhang, Jie Li, Yunxia An y Patrick Le Pivert. "Percutaneous Tumor Ablation". Technology in Cancer Research & Treatment 15, n.º 4 (9 de julio de 2016): 597–608. http://dx.doi.org/10.1177/1533034615593855.
Texto completoAlzubaidi, Sadeer J., Harris Liou, Gia Saini, Nicole Segaran, J. Scott Kriegshauser, Sailendra G. Naidu, Indravadan J. Patel y Rahmi Oklu. "Percutaneous Image-Guided Ablation of Lung Tumors". Journal of Clinical Medicine 10, n.º 24 (10 de diciembre de 2021): 5783. http://dx.doi.org/10.3390/jcm10245783.
Texto completoSalahia, Ghali, Sook Cheng Chin, Ian Zealley y Richard D. White. "The Role of Interventional Radiology in the Management of Pancreatic Pathologies". Journal of Gastrointestinal and Abdominal Radiology 3, n.º 01 (enero de 2020): 099–113. http://dx.doi.org/10.1055/s-0039-3401335.
Texto completoNimsdorf, F., C. Happel, H. Ackermann, F. Grünwald y H. Korkusuz. "Percutaneous microwave ablation of benign thyroid nodules". Nuklearmedizin 54, n.º 01 (2015): 13–19. http://dx.doi.org/10.3413/nukmed-0678-14-06.
Texto completoTesis sobre el tema "Percutaneous ablation"
Wieland, Ines. "Development of a 1.8mm percutaneous applicator with closed cycle cooking for microwave tumour ablation". Thesis, University of Bath, 2009. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.519020.
Texto completoKariniemi, J. (Juho). "Magnetic resonance imaging-guided percutaneous abdominal interventions". Doctoral thesis, Oulun yliopisto, 2011. http://urn.fi/urn:isbn:9789514295492.
Texto completoTiivistelmä Magneettikuvauksella elimistön kudoksista ja sairauksista saadaan tarkkaa tietoa missä tahansa kuvaussuunnassa ilman ionisoivaa säteilyä. Näiden ominaisuuksiensa takia magneettikuvaus on houkutteleva menetelmä myös kuvantaohjattujen perkutaanisten toimenpiteiden tekemiseen. Tämän tutkimuksen tavoitteena oli kehittää perkutaanisia vatsan magneettiohjattuja toimenpiteitä. Tämä tehtiin arvioimalla magneettikuvauksen soveltuvuutta, turvallisuutta ja kliinisiä tuloksia erilaisten diagnostisten ja terapeuttisten toimenpiteiden ohjaamisessa. Magneettiohjattujen vatsan neulanäytteiden turvallisuutta ja tarkkuutta arvioitiin 31 potilaalla, joille ei voitu tehdä ultraääniohjattua biopsiaa. Näytteitä otettiin maksasta, haimasta, imusolmukkeista, retroperitoneaalisista kasvaimista, lisämunuaisista ja pernasta. Kaikilta 31 potilaalta otettiin solunäyte, 18 potilaalta otettiin lisäksi kudosnäyte. Solunäytteiden sensitiivisyys oli 71 %, spesifisyys 100 % ja tarkkuus 90 %; kudosnäytteissä vastaavat luvut olivat 90 %, 100 % ja 94 %. Neulanäytteiden otosta ei aiheutunut yhtään komplikaatiota. Magneettiohjauksen soveltuvuutta ja turvallisuutta haiman nestekertymien perkutaanisessa dreneerauksessa arvioitiin kymmenellä potilaalla, joista puolella oli oireileva haiman pseudokysta ja puolella haiman absessi. Kaikki kanavoinnit tehtiin Seldingerin tekniikalla käyttäen magneettiyhteensopivia toimenpidevälineitä. Kaikkien nestekertymien dreneeraus magneettiohjatusti onnistui ilman välittömiä komplikaatioita ja keskimäärin toimenpiteeseen kului aikaa 44 minuuttia. Magneettiohjauksen soveltuvuutta ja turvallisuutta punktionefrostomian tekemiseen tutkittiin kahdeksalla potilaalla, joilla hydronefroosin aste vaihteli vähäisestä vaikeaan. Kaikki toimenpiteet tehtiin magneettiyhteensopivilla toimenpidevälineillä. Magneettiohjatut punktionefrostomiat onnistuivat lukuun ottamatta yhtä potilasta, jolla munuaispikareissa oli vähäistä laajentumaa. Keskimääräinen toimenpideaika oli 26 minuuttia eikä yhtään hoitoa vaativaa komplikaatiota tapahtunut. Magneettiohjatun perkutaanisen munuaissyövän laserpolton turvallisuutta ja tehokkuutta tutkittiin kahdeksalla potilaalla, joilla oli yhteensä kymmenen kasvainta. Kaikki kasvaimet olivat biopsialla varmennettuja munuaissyöpiä. Laserpoltot tehtiin lähes reaaliaikaisessa magneettikuvauskontrollissa käyttäen yhdestä neljään laserkuitua jokaista kasvainta kohden. Yhtä lukuun ottamatta kaikkien kasvainten poltto onnistui yhdellä hoitokerralla. Yhdellä potilaalla hoitoa komplisoi sydäninfarkti, mutta muut sietivät hoidon hyvin. Potilaita seurattiin hoidon jälkeen keskimäärin 20 kuukautta eikä seurannassa todettu yhtään taudin uusiutumaa
Corbin, Nadège. "Interventional magnetic resonance elastography dedicated to the monitoring of percutaneous thermal ablations". Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAD047/document.
Texto completoMR-guided percutaneous thermal ablations are currently monitored by MR thermometry. However, no information related to intrinsic property changes of the tissue is available during the procedure. The feasibility of monitoring in vivo thermal ablations by simultaneous Magnetic Resonance Elastography (MRE) and MR-thermometry is demonstrated in this work. The interventional MRE system includes a needle MRE driver, a respiratory triggered gradient-echo sequence with motion encoding, and an online reconstruction method that provides elasticity and temperature measurements in real-time. Changes in elasticity and temperature occurring during laser thermal ablations were successfully measured in vivo thanks to this interventional MRE system. An innovative method for MRE data processing without phase image reconstruction is also proposed in order to avoid challenging steps of the conventional process
BIONDETTI, PIERPAOLO. "THE USE OF THE CONE-BEAM COMPUTED TOMOGRAPHY FUSION IMAGING AND OF DEDICATED SOFTWARE FOR ABLATION VOLUME PREDICTION IN PERCUTANEOUS MICROWAVE ABLATION OF LIVER PRIMARY TUMORS". Doctoral thesis, Università degli Studi di Milano, 2022. https://hdl.handle.net/2434/947948.
Texto completoPETROLATI, ALESSANDRA. "La sede non influenza la probabilità di ablazione completa precoce, di recidiva locale e di sopravvivenza in 164 pazienti con 182 piccoli epatocarcinomi (< 4 cm) trattati con terapia laser per cutanea: analisi retrospettiva". Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2009. http://hdl.handle.net/2108/1132.
Texto completoBackground. Percutaneous laser ablation (PLA) has been proposed as an active treatment in patients with hepatocellular carcinoma with a significant activity in inducing complete ablation in HCC <4cm,. However, to date no data reported using PLA in treating lesions at high-risk located. Aim. To evaluate if the so-called high-risk location (e.g. close to vital structures) affects initial complete ablation rate, local recurrence rate and overall survival in cirrhotic patients with small hepatocellular carcinoma (HCC) treated with US-guided percutaneous laser ablation (LA) Materials and Methods. 182 small HCC nodules in 164 cirrhotic patients were treated by US-guided PLA (USg-PLA) between 1996 and 2008. One hundred six patients (52M/54F; mean age 69 yrs) had 116 HCC nodules (mean diameter 2.7 cm ; range 0.8- 4.0 cm ), either with exophytic growth or located <1cm from the liver edge or vital structures (high-risk group). Fifty eight patients (38M/20F, age 68yrs) had 66 HCC tumors (mean diameter 2.4 cm ; range 0.8- 4.8 cm ) located in not high-risk sites (low-risk group). Survival curves obtained via the Kaplan-Meier method were compared using the Log-Rank test. Multivariate analysis was based on Cox model. Results. The initial complete ablation did not significantly differ between the two groups ( 96.5 % vs 92.4%) (p= .497). The overall median follow-up was 81 months. For patients who achieved a complete response, the estimated local recurrence median time was 84 months in the low-risk group and 132 months in the high-risk group. Location did not significantly affect local recurrence free survival (p= .53) at both univariate and multivariate analysys after adjusting for diameter and tumour histology. Results by Cox model suggest the maximum diameter as the only significant predictor of local recurrence (p= .01). The overall survival did not differ significantly between the two groups (p= .374) and the 1-, 3- and 5-yr survival probability was 0.90 (s.e.=0.029), 0.54 (s.e.=0.053) and 0.33 (s.e.=0.054) in the high-risk group and 0.95 (s.e.=0.030), 0.66 (s.e.=0.070) and 0.33 (s.e.=0.074) in the low-risk one. At multivariate analysis location turned out not to be a significant predictor of overall survival. Conclusion. High-risk location of small HCC nodules treated with USg-PLA seems not to affect complete tumor ablation rate, local tumour recurrence rate and patients’ survival.
ODDO, SILVIA. "Percutaneous thermal ablations of benign thyroid nodules". Doctoral thesis, Università degli studi di Genova, 2018. http://hdl.handle.net/11567/930400.
Texto completoForgione, Kasey-Lee. "PET/CT-guided percutaneous liver biopsies or ablations using 20-second PET acquisitions". Thesis, Boston University, 2012. https://hdl.handle.net/2144/12386.
Texto completoPurpose: To determine the targeting accuracy of 20-second breath-hold PET scans versus up to 180-second summed, breath-hold PET scans during PET/CT- guided IR procedures for FOG-avid liver lesions. If feasible, single breath-hold PET scans may decrease scan times during PET/CT-guided procedures and improve PET/CT image co-registration for targets subject to respiratory motion. Materials and Methods: Ten patients with 13 liver lesions visible on FOG PET and unenhanced CT underwent PET/CT-guided liver biopsy or tumor ablation using respiratory-bellows-monitored, breath-hold PET and CT acquisitions. Nine 20-second, breath-hold PET scans and one breath-hold CT scan were obtained for each planning PET/CT scan. 20, 40, 60, and 180-second PET scans were reconstructed for each patient. Four interventional radiology readers reviewed 40 PET datasets followed by 10 CT datasets, both in random order, and marked the epicenter of the tumors using OsiriX PACS DICOM Viewer. 3-dimensional differences (distance errors) in target localization for each PET dataset compared to 180-second PET or CT, as gold standards, were analyzed with multiple regression models. Tumor sizes and FOG-avidities were correlated with magnitudes of targeting errors using Pearson correlation analysis. Statistical tests were two-sided; P < .05 was considered significant. Results: 20-second PET targeting errors compared to 180-second PET ranged from .7 - 153 mm (mean 19.2 mm) and were not significantly different than 40 or 60-second PET (P= .83 &.60). 20-second PET targeting errors compared to CT ranged from 1.4-468 mm (mean 37.3 mm) and were not statistically different than 40, 60, or 3 minute PET (P= .88 , .88, & .61 ). Overall, PET targeting errors were inversely correlated with tumor size (P< .001) and FOG avidity (P< .001 ). Conclusion: Targeting accuracy using 20-second breath-hold PET is comparable to longer PET acquisitions up to 180-seconds. PET targeting errors are larger for small tumors or tumors with low FOG avidity regardless of PET acquisition time. PET/CT scans for guiding percutaneous liver procedures are feasible in two breath-holds, one for CT and one for PET acquisitions, without compromising accuracy.
Roesler, Martin. "Experimentelle Evaluation der Laser-induzierten Thermotherapie (LITT) an ex-vivo Rinderleber unter Verwendung zweier Kühlmedien". Doctoral thesis, Humboldt-Universität zu Berlin, Medizinische Fakultät - Universitätsklinikum Charité, 2005. http://dx.doi.org/10.18452/15312.
Texto completoLaser-induced thermotherapy of ex-vivo cow liver with open microcatheter system: comparison of two used cooling agents PURPOSE: We evaluated the efficiency and safety of 90% Ethanol as a cooling agent in Laser-induced thermotherapy of the liver. MATERIAL AND METHODS: We used a Microcatheter with an outer diameter of 1.8 mm which was placed in ex-vivo cow liver. Connected to the microcather was a Dornier Diffusor-Tip H6111-T3 coupled to a Dornier Medilas Fibertom 5100 laser. We compared two types of cooling agents, physiological NaCl solution and 90% Ethanol, both with a flow of 0,75 ml/min and 1,5 ml/min. Fifteen minutes of ablation time and different laser powers were used. The lesions size was examined macroscopically. RESULTS: We were not able to find any difference in form or diameter of the ablated liver depending on the usage of NaCL and Ethanol as cooling agent. However utilization of Ethanol yielded a larger length of ablated liver in the high flow group. Furthermore usage of Ethanol results in a higher rate of destructed Dornier Diffusor-Tips. CONCLUSIONS: Under the present technical conditions there will be no benefit from the usage of Ethanol as cooling agent. For better results a new light guide system is needed, which is resistent to the effect of Ethanol.
Chen, Yi-Wen y 陳憶雯. "Treatment Efficacy and Safety of Ultrasound-Guided Percutaneous Radiofrequency Ablation for Benign Thyroid Nodules". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/e8gvf6.
Texto completoTsai, Yu-jou y 蔡毓洲. "Cost-effectiveness Analysis between Percutaneous Radiofrequency Ablation and Ethanol Injection for Very Early Hepatocellular Carcinoma". Thesis, 2009. http://ndltd.ncl.edu.tw/handle/ay9y6a.
Texto completo國立中山大學
醫務管理研究所
97
Introduction: Most literatures researched radiofrequency ablation (RFA) for early hepatocellular carcinoma (HCC) defined the early tumor size as 3cm or less. However, detection rate of HCC smaller than 2 cm became increasing since high risk patients had received regular screening and the imaging techniques has been much improved. Whether RFA or percutaneous ethanol injection (PEI) is better for a patient with such a small HCC is still controversial. Methods: We retrospectively obtained patients with single HCC 2 cm in diameter or smaller from the computerized medical records database in a local teaching hospital located at southern Taiwan, diagnosed during January 1, 2002 to April 30, 2008. Those patients received RFA (RFA group) or PEI (PEI group) as the first-line nonsurgical treatments were enrolled for further analysis. We compared baseline characteristics of RFA and PEI groups, including gender, age, possible risk factors of recurrence, and prognostic factors. Then, we analyzed recurrent rate, time to recurrence, survival rate, complication rate, mean cost of each treatment, and hospital stay of RFA and PEI groups. Results: There were 32 patients qualified for the study design, including 22 in PEI group:13 males and 9 females with mean age was 63.73 years; and 10 in RFA group:7 males and 3 females with mea age was 58.30 years。No statistically significant differences between RFA and PEI groups were observed with respect to baseline characteristics. Nevertheless, there was significant difference between these two groups with respect to mean hospital stay (p=0.007) and mean cost (p<0.001): mean cost of PEI was NTD $16934.7; mean cost of RFA was NTD $51677.6, the difference was NTD $34732.9. There was no difference respect to complication rate, recurrent rate, time to recurrence and overall survival rate between RFA and PEI groups. Conclusion: For patients with single HCC 2 cm in diameter or smaller (i.e. very early HCC), we concluded that: if under similar basic background, the cost of RFA was much higher than that of PEI, but no difference in the complication rate, recurrent rate, time to recurrence and overall survival rate between these two treatment.
Libros sobre el tema "Percutaneous ablation"
Vogl, Thomas J., Thomas K. Helmberger, Martin G. Mack y Maximilian F. Reiser, eds. Percutaneous Tumor Ablation in Medical Radiology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-68250-9.
Texto completoVogl, Thomas J., Thomas K. Helmberger, Martin G. Mack y Maximilian F. Reiser, eds. Percutaneous Tumor Ablation in Medical Radiology. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-36891-7.
Texto completoHong, Kelvin. Percutaneous tumor ablation: Strategies and techniques. New York: Thieme, 2011.
Buscar texto completoPercutaneous tumor ablation: Strategies and techniques. New York: Thieme, 2010.
Buscar texto completoHelmberger, Thomas, Martin G. Mack, Maximilian F. Reiser y Thomas J. Vogl. Percutaneous Tumor Ablation in Medical Radiology. Springer London, Limited, 2007.
Buscar texto completoMack, M. G., T. J. Vogl, T. K. Helmberger y M. F. Reiser. Percutaneous Tumor Ablation in Medical Radiology. Springer, 2010.
Buscar texto completo(Editor), T. J. Vogl, T. K. Helmberger (Editor), M. G. Mack (Editor) y M. F. Reiser (Editor), eds. Percutaneous Tumor Ablation in Medical Radiology (Medical Radiology / Diagnostic Imaging). Springer, 2007.
Buscar texto completoWolf, Farrah J. y Jason Iannuccilli. Percutaneous Thermal Ablation: Hydrodissection and Balloon Displacement to Protect Adjacent Non-Target Critical Structures. Editado por S. Lowell Kahn, Bulent Arslan y Abdulrahman Masrani. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199986071.003.0071.
Texto completoKainth, Daraspreet Singh, Karanpal Singh Dhaliwal y David W. Polly. Sacroiliac Joint Fusion: Percutaneous and Open. Editado por Mehul J. Desai. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199350940.003.0020.
Texto completoBansal, Anshuman y Fereidoun Abtin. Taming Cryoablation for Lung Tumors. Editado por S. Lowell Kahn, Bulent Arslan y Abdulrahman Masrani. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199986071.003.0072.
Texto completoCapítulos de libros sobre el tema "Percutaneous ablation"
Qian, Guojun, Jinglei Zhang y Feng Shen. "Percutaneous Ablation". En Intrahepatic Cholangiocarcinoma, 123–34. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22258-1_9.
Texto completoLivraghi, Tito y Maria Franca Meloni. "Percutaneous Ethanol Injection Therapy". En Tumor Ablation, 195–204. New York, NY: Springer New York, 2005. http://dx.doi.org/10.1007/0-387-28674-8_15.
Texto completoHa, Eun Ju y Jung Hwan Baek. "Percutaneous Radiofrequency Ablation". En Minimally Invasive Therapies for Endocrine Neck Diseases, 85–96. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-20065-1_7.
Texto completoFornage, Bruno D. y Beth S. Edeiken. "Percutaneous Ablation of Breast Tumors". En Tumor Ablation, 428–39. New York, NY: Springer New York, 2005. http://dx.doi.org/10.1007/0-387-28674-8_36.
Texto completoHelmberger, Thomas K. "Radiofrequency Ablation". En Percutaneous Tumor Ablation in Medical Radiology, 7–20. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-36891-7_2.
Texto completoBoss, Andreas, Damian Dupuy y Philippe L. Pereira. "Microwave Ablation". En Percutaneous Tumor Ablation in Medical Radiology, 21–28. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-36891-7_3.
Texto completoMack, Martin G. y Thomas J. Vogl. "Laser Ablation". En Percutaneous Tumor Ablation in Medical Radiology, 29–32. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-36891-7_4.
Texto completoZhou, Zhongguo y Minshan Chen. "Percutaneous Radiofrequency Thermal Ablation". En Radiofrequency Ablation for Small Hepatocellular Carcinoma, 39–46. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-7258-7_5.
Texto completoShah, Dipen, Pierre Jais y Michel Haissaguerre. "Percutaneous Atrial Catheter Ablation". En Innovative Management of Atrial Fibrillation, 93–112. Malden, Massachusetts, USA: Blackwell Publishing, 2007. http://dx.doi.org/10.1002/9780470994818.ch7.
Texto completoLubienski, Andreas, Martin Simon y Thomas K. Helmberger. "Percutaneous Alcohol Instillation". En Percutaneous Tumor Ablation in Medical Radiology, 123–27. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-36891-7_13.
Texto completoActas de conferencias sobre el tema "Percutaneous ablation"
Ryan, Thomas P., Jonathan Kwok y Robert J. Beetel. "Simulations of percutaneous RF ablation systems". En Biomedical Optics 2003, editado por Thomas P. Ryan. SPIE, 2003. http://dx.doi.org/10.1117/12.476627.
Texto completoMcNichols, Roger J., Ashok Gowda, Kamran Ahrar, R. J. Stafford, Roger E. Price y John D. Hazle. "Feasibility of percutaneous vertebroplasty with MR-guided laser ablation". En Biomedical Optics 2004, editado por Kenneth E. Bartels, Lawrence S. Bass, Werner T. W. de Riese, Kenton W. Gregory, Henry Hirschberg, Abraham Katzir, Nikiforos Kollias et al. SPIE, 2004. http://dx.doi.org/10.1117/12.528468.
Texto completoReimann, Carolin, Margarita Puentes, Holger Maune, Rolf Jakoby, Babak Bazrafshan, Frank Hubner y Thomas J. Vogl. "A cylindrical shaped theranostic applicator for percutaneous microwave ablation". En 2017 First IEEE MTT-S International Microwave Bio Conference (IMBIOC). IEEE, 2017. http://dx.doi.org/10.1109/imbioc.2017.7965791.
Texto completoAlghamdi, Ibrahim Abulaziz, Zia Zergham, Mohammed Haytham Mawardi, Salah Saleh Kary y Majed Ahmed Ashour. "Combined Transarterial Chemoembolization and Percutaneous Ablation: A Single-Center Experience". En PAIRS Annual Meeting. Thieme Medical and Scientific Publishers Pvt. Ltd., 2018. http://dx.doi.org/10.1055/s-0041-1730670.
Texto completoPinnock, Mark A., Yipeng Hu, Steve Bandula y Dean C. Barratt. "End-to-end forecasting of needle trajectory in percutaneous ablation". En Image-Guided Procedures, Robotic Interventions, and Modeling, editado por Cristian A. Linte y Jeffrey H. Siewerdsen. SPIE, 2021. http://dx.doi.org/10.1117/12.2580712.
Texto completoKang, Sungjoon y Sujata Bhatia. "Analysis of Deaths Reported for Percutaneous Cardiac Ablation Catheter Devices". En The 8th World Congress on New Technologies. Avestia Publishing, 2022. http://dx.doi.org/10.11159/icbb22.002.
Texto completoWang, Haoyu, Hongrui Yi, Jie Liu y Lixu Gu. "Integrated Treatment Planning in Percutaneous Microwave Ablation of Lung Tumors". En 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2022. http://dx.doi.org/10.1109/embc48229.2022.9871915.
Texto completofeng, hua S. y nie zhoushan. "Application Of Percutaneous Argon-Helium Ablation For Non-Small Cell Lung Cancer". En American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a3053.
Texto completoDomiziana, Santucci, Faiella Eliodoro, Pacella Giuseppina, Grasso Rosario Francesco y Beomonte Zobel Bruno. "Our Experience in Percutaneous Ablative Treatment of Renal T1a E T1b Lesions: Results from 90 Patients Treated with Microwave Ablation, Radiofrequency Ablation and Cryoablation". En PAIRS Annual Meeting. Thieme Medical and Scientific Publishers Pvt. Ltd., 2019. http://dx.doi.org/10.1055/s-0041-1730525.
Texto completoKeshava, Krishna N., Benjamin B. Kimia, Madeleine Cook, Damian E. Dupuy, Scott A. Collins y Derek Merck. "A methodology to analyze treatment zone geometry and variability of percutaneous thermal ablation". En SPIE BiOS, editado por Thomas P. Ryan. SPIE, 2015. http://dx.doi.org/10.1117/12.2082834.
Texto completoInformes sobre el tema "Percutaneous ablation"
Zhang, Jian-Hua, Yu-Fei Fu y Jing-Ya Wang. Percutaneous ablation for adrenal metastases: a systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, julio de 2022. http://dx.doi.org/10.37766/inplasy2022.7.0032.
Texto completoHuang, Yi-Yang, Hong Cheng, Xin-JIan Xu y Xiang-Zhong Huang. Laparoscopic adrenalectomy versus percutaneous ablation for aldosterone‑producing adenoma: a meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, abril de 2021. http://dx.doi.org/10.37766/inplasy2021.4.0006.
Texto completoZhang, Feng-Qin, Jian Sun y Xiao-Jie Gu. Repeat resection versus percutaneous ablation for recurrent hepatocellular carcinoma: a meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, abril de 2022. http://dx.doi.org/10.37766/inplasy2022.4.0117.
Texto completoChen, Dongjie, Man Zhao y Xiaoyong Xiang. Percutaneous local tumor ablation versus Stereotactic body radiotherapy for early-stage non-small cell lung cancer: a systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, junio de 2021. http://dx.doi.org/10.37766/inplasy2021.6.0099.
Texto completo