Literatura académica sobre el tema "Perceptual science"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Perceptual science".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Perceptual science"
Buccella, Alessandra. "Perceptual science and the nature of perception". THEORIA 37, n.º 2 (30 de junio de 2022): 149–62. http://dx.doi.org/10.1387/theoria.22650.
Texto completoPentland, Alex. "Perceptual user interfaces: perceptual intelligence". Communications of the ACM 43, n.º 3 (marzo de 2000): 35–44. http://dx.doi.org/10.1145/330534.330536.
Texto completoReeves, Byron y Clifford Nass. "Perceptual user interfaces: perceptual bandwidth". Communications of the ACM 43, n.º 3 (marzo de 2000): 65–70. http://dx.doi.org/10.1145/330534.330542.
Texto completoSugden, Andrew M. "Perceptual and judgment creep". Science 360, n.º 6396 (28 de junio de 2018): 1416.1–1416. http://dx.doi.org/10.1126/science.360.6396.1416-a.
Texto completoGregory, Richard L. "How Can Perceptual Science Help the Handicapped?" Perception 21, n.º 1 (febrero de 1992): 1–6. http://dx.doi.org/10.1068/p210001.
Texto completoRamachandran, V., D. Rogers-Ramachandran y M. Stewart. "Perceptual correlates of massive cortical reorganization". Science 258, n.º 5085 (13 de noviembre de 1992): 1159–60. http://dx.doi.org/10.1126/science.1439826.
Texto completoPoggio, T., M. Fahle y S. Edelman. "Fast perceptual learning in visual hyperacuity". Science 256, n.º 5059 (15 de mayo de 1992): 1018–21. http://dx.doi.org/10.1126/science.1589770.
Texto completoSalzman, C. y W. Newsome. "Neural mechanisms for forming a perceptual decision". Science 264, n.º 5156 (8 de abril de 1994): 231–37. http://dx.doi.org/10.1126/science.8146653.
Texto completoAdelson, E. "Perceptual organization and the judgment of brightness". Science 262, n.º 5142 (24 de diciembre de 1993): 2042–44. http://dx.doi.org/10.1126/science.8266102.
Texto completoLiu, Chenyang, Sha Sha, Xiujun Zhang, Zhiming Bian, Lin Lu, Bin Hao, Lina Li et al. "The Time Course of Perceptual Closure of Incomplete Visual Objects: An Event-Related Potential Study". Computational Intelligence and Neuroscience 2020 (6 de octubre de 2020): 1–7. http://dx.doi.org/10.1155/2020/8825197.
Texto completoTesis sobre el tema "Perceptual science"
Secchia, Adrian. "Perceptual refinement for hierarchical radiosity". Master's thesis, University of Cape Town, 2000. http://hdl.handle.net/11427/6439.
Texto completoThis dissertation explores the use of a simple model of the human visual system to yield a performance improvement with hierarchical radiosity. Hierarchical radiosity is a physically based rendering algorithm and hence makes no attempt to optimize computation for human perception. We used a model of the edge enhancement properties of the human visual system to produce a perceptually based refinement oracle for the hierarchical radiosity algorithm. Tests of the perceptual oracle shows that it allows the hierarchical radiosity algorithm to produce the same visual quality output in half the time and using half the memory compared to the same algorithm using the standard refinement oracle.
Horswill, Ian Douglas. "Specialization of perceptual processes". Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/12729.
Texto completoIncludes bibliographical references (leaves 152-161).
by Ian D. Horswill.
Ph.D.
Savadjiev, Peter. "Perceptual organisation in diffusion MRI: curves and streamline flows". Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=32390.
Texto completoCette thèse présente une méthodologie pour la modélisation de la structure de tissus biologiques à partir de données d'imagerie par résonance magnetique (IRM) de diffusion. En mesurant le mouvement Brownien des molécules d'eau, l'IRM de diffusion permet d'estimer localement les orientations des fibres de matière blanche dans le cerveau. L'IRM de diffusion est un outil important pour l'étude in vivo de la connectivité du cerveau. Cependant, l'inférence de la structure des fibres de matière blanche demeure un problème en grande partie irrésolu. La méthodologie présentée dans cette thèse est basée sur la géométrie différentielle ainsi que sur l'organisation perceptuelle. Étant donné que les fibres de matière blanche peuvent être représentées par des courbes en 3D, et que l'IRM de diffusion donne des mesures reliées aux vecteurs tangents de ces courbes, le problème de base consiste à faire l'inférence de la géométrie de courbes en 3D, à partir de mesures de vecteurs tangents qui sont discretisées, incomplètes, et qui peuvent aussi être floues et bruitées. En se basant sur des notions empruntées à l'organisation perceptuelle en vision par ordinateur, nous développons des contraintes géométriques locales qui guident le processus d'inférence et dont le résultat ultime est la reconstruction de la géométrie des fibres sous-jacentes. Nous débutons par l'introduction d'une notion de co-hélicité entre des triplets d'estimés d'orientation, qui est incorporée dans un processus d'inférence géométrique. Cette méthode est appelée "3D curve inference" (inférence de courbes en 3D), et elle estime les paramètres de l'hélice osculatrice
WONG, Hon Yui Eric. "Sino-American strategic relations : a perceptual-psychological approach". Digital Commons @ Lingnan University, 2002. https://commons.ln.edu.hk/pol_etd/8.
Texto completoSu, Sara Lee 1982. "Perceptual picture emphasis using texture power maps". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/30181.
Texto completoIncludes bibliographical references (p. 65-70).
Applying selective emphasis to photographs is a critical aspect of the visual design process. There is evidence from psychophysics that contrast in texture is a key contributor to saliency in an image, yet unlike other low-level perceptual features, texture cannot be directly modified with existing image-processing software. We present a post-processing technique to subtly change the salience of regions of an image by modifying spatial variation in texture. Our method is inspired by computational models of visual attention that capture sensitivity to outliers in local feature distributions. We use the steerable pyramid, which encodes multi-scale oriented image features and compute a set of power maps which capture the local texture content at each scale and orientation. With this representation, texture variation can be modified to selectively add or remove emphasis in the image. Two user studies provide qualitative and quantitative psychophysical validation of our approach.
by Sara Lee Su.
S.M.
Shao, Yunming. "Image-based Perceptual Learning Algorithm for Autonomous Driving". The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1503302777088283.
Texto completoHewage, Chaminda T. E. R. "Perceptual quality driven 3-D video over networks". Thesis, University of Surrey, 2008. http://eprints.kingston.ac.uk/22178/.
Texto completoYeddanapudi, Neelima 1976. "Characterizing the perceptual diffusion of auditory lateralization images". Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/29722.
Texto completoIncludes bibliographical references (leaf 44).
When two statistically independent noise sources with different interaural time delays are presented simultaneously over headphones, the separated source images seem to become diffuse and merge over time. Experiments were designed to test the hypothesis that the measure of diffusion perceived would increase over time. Target stimuli were created consisting of the two simultaneous sources with different interaural time delays, and attempts were made to study the diffusion as a function of stimulus duration, as well as relative onset of the two noise sources. These target stimuli were compared to a set of partially decorrelated noise stimuli composed of three statistically independent sources. It was hoped that by varying the degree of decorrelation in these comparison stimuli, one could simulate different stages in the transition from two source images to one merged image observed in the target stimuli. The experiments failed to produce the expected results, but strategies for improved experimental designs were devised.
by Neelima Yeddanapudi.
M.Eng.
Alwan, Abeer Abdul-Hussain. "Acoustic and perceptual correlates of pharyngeal and uvular consonants". Thesis, Massachusetts Institute of Technology, 1986. http://hdl.handle.net/1721.1/34302.
Texto completoMICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING
Bibliography: leaves 138-147.
by Abeer Abdul-Hussain Alwan.
M.S.
Stauffer, Christopher P. (Christopher Paul) 1971. "Perceptual data mining : bootstrapping visual intelligence from tracking behavior". Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/8111.
Texto completoIncludes bibliographical references (p. 161-166).
One common characteristic of all intelligent life is continuous perceptual input. A decade ago, simply recording and storing a a few minutes of full frame-rate NTSC video required special hardware. Today, an inexpensive personal computer can process video in real-time tracking and recording information about multiple objects for extended periods of time, which fundamentally enables this research. This thesis is about Perceptual Data Mining (PDM), the primary goal of which is to create a real-time, autonomous perception system that can be introduced into a wide variety of environments and, through experience, learn to model the activity in that environment. The PDM framework infers as much as possible about the presence, type, identity, location, appearance, and activity of each active object in an environment from multiple video sources, without explicit supervision. PDM is a bottom-up, data-driven approach that is built on a novel, robust attention mechanism that reliably detects moving objects in a wide variety of environments. A correspondence system tracks objects through time and across multiple sensors producing sets of observations of objects that correspond to the same object in extended environments. Using a co-occurrence modeling technique that exploits the variation exhibited by objects as they move through the environment, the types of objects, the activities that objects perform, and the appearance of specific classes of objects are modeled. Different applications of this technique are demonstrated along with a discussion of the corresponding issues.
(cont.) Given the resulting rich description of the active objects in the environment, it is possible to model temporal patterns. An effective method for modeling periodic cycles of activity is demonstrated in multiple environments. This framework can learn to concisely describe regularities of the activity in an environment as well as determine atypical observations. Though this is accomplished without any supervision, the introduction of a minimal amount of user interaction could be used to produce complex, task-specific perception systems.
by Christopher P. Stauffer.
Ph.D.
Libros sobre el tema "Perceptual science"
Lowe, David G. Perceptual Organization and Visual Recognition. Boston, MA: Springer US, 1985.
Buscar texto completoBoyer, Kim L. Perceptual Organization for Artificial Vision Systems. Boston, MA: Springer US, 2000.
Buscar texto completoMartens, Jean-Bernard. Image Technology Design: A Perceptual Approach. Boston, MA: Springer US, 2003.
Buscar texto completoForssell, Dag. Perceptual Control Theory: SCIENCE & APPLICATIONS : A BOOK OF READINGS. Hayward, CA: Living Control Systems Publishing, 2009.
Buscar texto completoCynthia, Moss y Shettleworth Sara J, eds. Neuroethological studies of cognitive and perceptual processes. Boulder, Colo: Westview Press, 1996.
Buscar texto completoauthor, Gan Woon-Seng, ed. Perceptual image coding with discrete cosine transform. Singapore: Springer, 2015.
Buscar texto completoOutside color: Perceptual science and the puzzle of color in philosophy. Cambridge, Massachusetts: MIT Press, 2015.
Buscar texto completoWoodard, Carol. Physical science in early childhood. Springfield, Ill., U.S.A: C.C. Thomas, 1987.
Buscar texto completoRik, Warren y Wertheim Alexander H, eds. Perception & control of self-motion. Hillsdale, N.J: L. Erlbaum Assoc., 1990.
Buscar texto completoInternational Conference on Perception and Action (10th 1999 Edinburgh, Scotland). Studies in perception and action V: Tenth International Conference on Perception and Action : Aug. 8-13, 1999, Edinburgh, Scotland. Mahwah, N.J: L. Erlbaum Associates, 1999.
Buscar texto completoCapítulos de libros sobre el tema "Perceptual science"
Cellucci, Carlo. "Perceptual Knowledge". En European Studies in Philosophy of Science, 199–211. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53237-0_15.
Texto completoBetz, Frederick. "Paradigms and Perceptual Spaces". En Managing Science, 145–64. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7488-4_7.
Texto completoDickinson, Sven J., Alex Levinshtein y Cristian Sminchisescu. "Perceptual Grouping Using Superpixels". En Lecture Notes in Computer Science, 13–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31149-9_2.
Texto completoTuluptceva, Nina, Bart Bakker, Irina Fedulova y Anton Konushin. "Perceptual Image Anomaly Detection". En Lecture Notes in Computer Science, 164–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41404-7_12.
Texto completode Stoutz, Etienne, Andrey Ignatov, Nikolay Kobyshev, Radu Timofte y Luc Van Gool. "Fast Perceptual Image Enhancement". En Lecture Notes in Computer Science, 260–75. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11021-5_17.
Texto completoZavagno, Daniele y Olga Daneyko. "Perceptual Grouping, and Color". En Encyclopedia of Color Science and Technology, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27851-8_220-1.
Texto completoZavagno, Daniele y Olga Daneyko. "Perceptual Grouping, and Color". En Encyclopedia of Color Science and Technology, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-642-27851-8_220-2.
Texto completoZavagno, Daniele y Olga Daneyko. "Perceptual Grouping and Color". En Encyclopedia of Color Science and Technology, 1001–5. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4419-8071-7_220.
Texto completoMaguire, William, Naomi Weisstein y Victor Klymenko. "From Visual Structure to Perceptual Function". En Science of Vision, 254–310. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3406-7_9.
Texto completoSergej, Tomasz y Radosław Mantiuk. "Perceptual Evaluation of Demosaicing Artefacts". En Lecture Notes in Computer Science, 38–45. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11758-4_5.
Texto completoActas de conferencias sobre el tema "Perceptual science"
Kupeev, Konstantin Y. y Haim J. Wolfson. "Perceptual convexity". En SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation, editado por Robert A. Melter, Angela Y. Wu, Fred L. Bookstein y William D. K. Green. SPIE, 1995. http://dx.doi.org/10.1117/12.216408.
Texto completoDrascic, David y Paul Milgram. "Perceptual issues in augmented reality". En Electronic Imaging: Science & Technology, editado por Mark T. Bolas, Scott S. Fisher y John O. Merritt. SPIE, 1996. http://dx.doi.org/10.1117/12.237425.
Texto completoTeo, Patrick C. y David J. Heeger. "Perceptual image distortion". En IS&T/SPIE 1994 International Symposium on Electronic Imaging: Science and Technology, editado por Bernice E. Rogowitz y Jan P. Allebach. SPIE, 1994. http://dx.doi.org/10.1117/12.172664.
Texto completoLigomenides, Panos A. "On-line perceptual recognition system". En Applications in Optical Science and Engineering, editado por Hatem N. Nasr y Rodney M. Larson. SPIE, 1993. http://dx.doi.org/10.1117/12.143058.
Texto completoBech, Soren, Roelof Hamberg, Marco Nijenhuis, Kees Teunissen, Henny Looren de Jong, Paul Houben y Sakti K. Pramanik. "Rapid perceptual image description (RaPID) method". En Electronic Imaging: Science & Technology, editado por Bernice E. Rogowitz y Jan P. Allebach. SPIE, 1996. http://dx.doi.org/10.1117/12.238728.
Texto completoJayant, Nikil S., James D. Johnston y Robert J. Safranek. "Perceptual coding of images". En IS&T/SPIE's Symposium on Electronic Imaging: Science and Technology, editado por Jan P. Allebach y Bernice E. Rogowitz. SPIE, 1993. http://dx.doi.org/10.1117/12.152691.
Texto completoSermanet, Pierre, Kelvin Xu y Sergey Levine. "Unsupervised Perceptual Rewards for Imitation Learning". En Robotics: Science and Systems 2017. Robotics: Science and Systems Foundation, 2017. http://dx.doi.org/10.15607/rss.2017.xiii.050.
Texto completoPelah, Adar. "Inverting the perceptual transform". En IS&T/SPIE 1994 International Symposium on Electronic Imaging: Science and Technology, editado por Bernice E. Rogowitz y Jan P. Allebach. SPIE, 1994. http://dx.doi.org/10.1117/12.172659.
Texto completoMoser, Jean-Frederic, Rene Staub y Wayne R. Tompkin. "Perceptual information from OVD diffraction security devices". En Electronic Imaging: Science & Technology, editado por Rudolf L. van Renesse. SPIE, 1996. http://dx.doi.org/10.1117/12.235473.
Texto completoAssadi, Amir H., Stephen Palmer, Hamid Eghbalnia y John Carew. "Geometry of the perceptual space". En SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, editado por Longin J. Latecki, Robert A. Melter, David M. Mount y Angela Y. Wu. SPIE, 1999. http://dx.doi.org/10.1117/12.364087.
Texto completo