Índice
Literatura académica sobre el tema "Pelagomonas calceolata"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Pelagomonas calceolata".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Pelagomonas calceolata"
Heimann, Kirsten, Robert A. Andersen y Richard Wetherbee. "THE FLAGELLAR DEVELOPMENT CYCLE OF THE UNIFLAGELLATE PELAGOMONAS CALCEOLATA (PELAGOPHYCEAE)1". Journal of Phycology 31, n.º 4 (agosto de 1995): 577–83. http://dx.doi.org/10.1111/j.1529-8817.1995.tb02553.x.
Texto completoDimier, CÉline, Christophe Brunet, Richard Geider y John Raven. "Growth and photoregulation dynamics of the picoeukaryote Pelagomonas calceolata in fluctuating light". Limnology and Oceanography 54, n.º 3 (mayo de 2009): 823–36. http://dx.doi.org/10.4319/lo.2009.54.3.0823.
Texto completoLe Gall, F., F. Rigaut-Jalabert, D. Marie, L. Garczarek, M. Viprey, A. Gobet y D. Vaulot. "Picoplankton diversity in the South-East Pacific Ocean from cultures". Biogeosciences Discussions 4, n.º 4 (7 de agosto de 2007): 2699–732. http://dx.doi.org/10.5194/bgd-4-2699-2007.
Texto completoLe Gall, F., F. Rigaut-Jalabert, D. Marie, L. Garczarek, M. Viprey, A. Gobet y D. Vaulot. "Picoplankton diversity in the South-East Pacific Ocean from cultures". Biogeosciences 5, n.º 1 (15 de febrero de 2008): 203–14. http://dx.doi.org/10.5194/bg-5-203-2008.
Texto completoGuérin, Nina, Marta Ciccarella, Elisa Flamant, Paul Frémont, Sophie Mangenot, Benjamin Istace, Benjamin Noel et al. "Genomic adaptation of the picoeukaryote Pelagomonas calceolata to iron-poor oceans revealed by a chromosome-scale genome sequence". Communications Biology 5, n.º 1 (16 de septiembre de 2022). http://dx.doi.org/10.1038/s42003-022-03939-z.
Texto completoKang, Yoonja, Matthew J. Harke, Dianna L. Berry, Jackie L. Collier, Steven W. Wilhelm, Sonya T. Dyhrman y Christopher J. Gobler. "Transcriptomic Responses of Four Pelagophytes to Nutrient (N, P) and Light Stress". Frontiers in Marine Science 8 (17 de marzo de 2021). http://dx.doi.org/10.3389/fmars.2021.636699.
Texto completoSibbald, Shannon J., Maggie Lawton y John M. Archibald. "Mitochondrial Genome Evolution in Pelagophyte Algae". Genome Biology and Evolution 13, n.º 3 (2 de febrero de 2021). http://dx.doi.org/10.1093/gbe/evab018.
Texto completoGutowska, Magdalena A., Brateen Shome, Sebastian Sudek, Darcy L. McRose, Maria Hamilton, Stephen J. Giovannoni, Tadhg P. Begley y Alexandra Z. Worden. "Globally Important Haptophyte Algae Use Exogenous Pyrimidine Compounds More Efficiently than Thiamin". mBio 8, n.º 5 (10 de octubre de 2017). http://dx.doi.org/10.1128/mbio.01459-17.
Texto completoTesis sobre el tema "Pelagomonas calceolata"
Guerin, Nina. "Acclimatation du pico-eucaryote photosynthétique Pelagomonas calceolata aux changements environnementaux". Electronic Thesis or Diss., université Paris-Saclay, 2023. https://www.biblio.univ-evry.fr/theses/2023/interne/2023UPASL138.pdf.
Texto completoPhotosynthetic picoeukaryotes (PPE) are abundant in all oceans and represent a significant proportion of biomass and primary production. Climate models predict an extension of oligotrophic areas in the following decades, which could greatly increase the abundance and ecological impact of PPEs. Among them, the microalga Pelagomonas calceolata (Stramenopiles/Pelagophyceae) is widely distributed in the oceans (Worden et al., 2012) but its role in the carbon cycle and its impact on the trophic chain remain poorly characterised (Dupont et al., 2015). In situ and in vitro analyses suggest that P. calceolata can adapt to environmental variations thanks to a significant capacity to modulate gene expression (Carradec et al., 2018; Dimier et al., 2009). The aim of this thesis is to understand how P. calceolata adapts to environmental variations in the many environments it lives in. In the first chapter, the P. calceolata genome is assembled, annotated and compared with those of other PPEs. Thanks to metagenomic and metatranscriptomic data from the Tara Oceans expedition, the biogeography and transcriptomic activity of P. calceolata under different environmental conditions has provided a better understanding of the present and future distribution of this alga, and the genes involved in its ecological success (Guérin et al 2022). In the second chapter, we focused on the acclimatisation habilites of P. calceolata to changing nitrogen quantities and sources. Differentially expressed genes (DEGs) in P. calceolata as a function of nitrate concentration in Tara Oceans samples were compared with those identified during growth experiments under controlled conditions. P. calceolata was grown in media depleted in nitrate or in which nitrate was replaced by ammonium, urea or cyanate. The comparison of DEGs obtained in the laboratory with those obtained from environmental data provides a better understanding of the metabolism of this microalga in the face of nitrate shortage, and of the mechanisms put in place in the environment to cope with variability in nitrate availability, in particular through its ability to use organic nitrogen sources. In the third chapter, we aimed to better understand how depth affects the physiology of P. calceolata. P. calceolata is found in water samples from the surface down to a depth of at least 200m. We found that sampling depth had a strong impact on the expression of P. calceolata genes involved in photorespiration and carbon concentration mechanisms. During this PhD thesis, the characterisation of the adaptive capacities of P. calceolata led to a better understanding of how transcriptomic regulation enables it to be cosmopolitan, and shows that this microalga can be used as a model organism thanks to the possibility of studying it simultaneously in the laboratory and in environmental multi-omics data