Artículos de revistas sobre el tema "Peak-to-Valley Current Ratio"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Peak-to-Valley Current Ratio.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Peak-to-Valley Current Ratio".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Oobo, Takashi, Riichiro Takemura, Michihiko Suhara, Yasuyuki Miyamoto y Kazuhito Furuya. "High Peak-to-Valley Current Ratio GaInAs/GaInP Resonant Tunneling Diodes". Japanese Journal of Applied Physics 36, Part 1, No. 8 (15 de agosto de 1997): 5079–80. http://dx.doi.org/10.1143/jjap.36.5079.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Huang, C. I., M. J. Paulus, C. A. Bozada, S. C. Dudley, K. R. Evans, C. E. Stutz, R. L. Jones y M. E. Cheney. "AlGaAs/GaAs double barrier diodes with high peak‐to‐valley current ratio". Applied Physics Letters 51, n.º 2 (13 de julio de 1987): 121–23. http://dx.doi.org/10.1063/1.98588.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Jiang, Zhi, Yiqi Zhuang, Cong Li y Ping Wang. "Tunnel Dielectric Field-Effect Transistors with High Peak-to-Valley Current Ratio". Journal of Electronic Materials 46, n.º 2 (3 de noviembre de 2016): 1088–92. http://dx.doi.org/10.1007/s11664-016-5021-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Duschl, R., O. G. Schmidt, G. Reitemann, E. Kasper y K. Eberl. "High room temperature peak-to-valley current ratio in Si based Esaki diodes". Electronics Letters 35, n.º 13 (1999): 1111. http://dx.doi.org/10.1049/el:19990728.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Zhang, Baoqing, Liuyun Yang, Ding Wang, Patrick Quach, Shanshan Sheng, Duo Li, Tao Wang et al. "Repeatable room temperature negative differential resistance in AlN/GaN resonant tunneling diodes grown on silicon". Applied Physics Letters 121, n.º 19 (7 de noviembre de 2022): 192107. http://dx.doi.org/10.1063/5.0127379.

Texto completo
Resumen
We report repeatable AlN/GaN resonant tunneling diodes (RTDs) grown on a silicon substrate by plasma-assisted molecular-beam epitaxy. The RTDs exhibit stable negative differential resistance without hysteresis at room temperature, where no degradation is observed even after 500 continuous bidirectional sweeps. The peak-to-valley current ratio is 1.36, and the peak current density is 24.38 kA/cm2. When the temperature is changed from 77 to 475 K, the peak current remains almost unchanged and the valley current increases gradually, resulting in a reduced peak-to-valley current ratio from 1.59 to 1.07. Our work softens the material quality constraints on realizing the room-temperature repeatable negative differential resistance and paves the way to low-cost III-nitride-based monolithic and hybrid microwave integrated circuits on large-size silicon wafers.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Wang, Y. H., H. C. Wei y M. P. Houng. "Demonstration of high peak‐to‐valley current ratio in anN‐p‐nAlGaAs/GaAs structure". Journal of Applied Physics 73, n.º 11 (junio de 1993): 7990–92. http://dx.doi.org/10.1063/1.353913.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Reddy, V. K., A. J. Tsao y D. P. Neikirk. "High peak-to-valley current ratio AlGaAs/AlAs/GaAs double barrier resonant tunnelling diodes". Electronics Letters 26, n.º 21 (1990): 1742. http://dx.doi.org/10.1049/el:19901119.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Potter, Robert C., Amir A. Lakhani, Dana Beyea y Harry Hier. "Enhancement of current peak‐to‐valley ratio in In0.52Al0.48As/In0.53Ga0.47As ‐based resonant tunneling diodes". Journal of Applied Physics 63, n.º 12 (15 de junio de 1988): 5875–76. http://dx.doi.org/10.1063/1.340278.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Duong, Ngoc Thanh, Seungho Bang, Seung Mi Lee, Dang Xuan Dang, Dong Hoon Kuem, Juchan Lee, Mun Seok Jeong y Seong Chu Lim. "Parameter control for enhanced peak-to-valley current ratio in a MoS2/MoTe2 van der Waals heterostructure". Nanoscale 10, n.º 26 (2018): 12322–29. http://dx.doi.org/10.1039/c8nr01711e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

LIANG, Dong-Shong, Kwang-Jow GAN, Cheng-Chi TAI y Cher-Shiung TSAI. "Standard BiCMOS Implementation of a Two-Peak Negative Differential Resistance Circuit with High and Adjustable Peak-to-Valley Current Ratio". IEICE Transactions on Electronics E92-C, n.º 5 (2009): 635–38. http://dx.doi.org/10.1587/transele.e92.c.635.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Lee, Sejoon, Youngmin Lee, Emil B. Song y Toshiro Hiramoto. "Modulation of peak-to-valley current ratio of Coulomb blockade oscillations in Si single hole transistors". Applied Physics Letters 103, n.º 10 (2 de septiembre de 2013): 103502. http://dx.doi.org/10.1063/1.4819442.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Oehme, Michael, Marko Sarlija, Daniel Hahnel, Mathias Kaschel, Jens Werner, E. Kasper y J. Schulze. "Very High Room-Temperature Peak-to-Valley Current Ratio in Si Esaki Tunneling Diodes (March 2010)". IEEE Transactions on Electron Devices 57, n.º 11 (noviembre de 2010): 2857–63. http://dx.doi.org/10.1109/ted.2010.2068395.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Aggarwal, R. J. y C. G. Fonstad. "High peak-to-valley current ratio In0.22Ga0.78As/AlAs RTDs on GaAs using relaxed InxGa1-xAs buffers". Electronics Letters 31, n.º 1 (5 de enero de 1995): 75–77. http://dx.doi.org/10.1049/el:19950002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Wang, Wei, Hao Sun, Teng Teng y Xiaowei Sun. "High peak-to-valley current ratio In0.53Ga0.47As/AlAs resonant tunneling diode with a high doping emitter". Journal of Semiconductors 33, n.º 12 (diciembre de 2012): 124002. http://dx.doi.org/10.1088/1674-4926/33/12/124002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Kannan, V., K. R. Rajesh, M. R. Kim, Y. S. Chae y J. K. Rhee. "Large current peak-to-valley ratio observed in CdSe quantum dot/MEH-PPV based nanocomposite heterostructure". Applied Physics A 102, n.º 3 (4 de enero de 2011): 611–14. http://dx.doi.org/10.1007/s00339-010-6162-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Ipsita, Sushree, P. K. Mahapatra y P. Panchadhyayee. "Optimum device parameters to attain the highest peak to valley current ratio (PVCR) in resonant tunneling diodes (RTD)". Physica B: Condensed Matter 611 (junio de 2021): 412788. http://dx.doi.org/10.1016/j.physb.2020.412788.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Shin, Sunhae, In Man Kang y Kyung Rok Kim. "Negative Differential Resistance Devices with Ultra-High Peak-to-Valley Current Ratio and Its Multiple Switching Characteristics". JSTS:Journal of Semiconductor Technology and Science 13, n.º 6 (31 de diciembre de 2013): 546–50. http://dx.doi.org/10.5573/jsts.2013.13.6.546.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Day, D. J., Rui Q. Yang, Jian Lu y J. M. Xu. "Experimental demonstration of resonant interband tunnel diode with room temperature peak‐to‐valley current ratio over 100". Journal of Applied Physics 73, n.º 3 (febrero de 1993): 1542–44. http://dx.doi.org/10.1063/1.353231.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Söderström, Jan y Thorwald G. Andersson. "resonant tunneling diodes: The dependence of the peak-to-valley current ratio on barrier thickness and height". Superlattices and Microstructures 5, n.º 1 (enero de 1989): 109–13. http://dx.doi.org/10.1016/0749-6036(89)90077-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Tsujino, S., N. Usami, A. Weber, G. Mussler, V. Shushunova, D. Grützmacher, Y. Azuma y K. Nakajima. "SiGe double barrier resonant tunneling diodes on bulk SiGe substrates with high peak-to-valley current ratio". Applied Physics Letters 91, n.º 3 (16 de julio de 2007): 032104. http://dx.doi.org/10.1063/1.2756363.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Fang, Y. K., K. H. Chen, K. S. Wu, C. R. Liu y J. D. Hwang. "An amorphous silicon/silicon‐carbide double barrier structure with 2.66 peak to valley current ratio negative resistance". Journal of Applied Physics 72, n.º 3 (agosto de 1992): 1178–79. http://dx.doi.org/10.1063/1.351798.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Hsu, Che-Wei, Quang Ho Luc, hua Lun Ko, Ping Huang, Jing Yuan Wu, Nhan Ai Tran y Edward Yi Chang. "Superior Peak to Valley Current Ratio of the InAs/Gasb Core-Shell Nanowires for Tunnel Diode Application". ECS Meeting Abstracts MA2020-02, n.º 51 (23 de noviembre de 2020): 3835. http://dx.doi.org/10.1149/ma2020-02513835mtgabs.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Afzal, Amir Muhammad, Muhammad Zahir Iqbal, Muhammad Waqas Iqbal, Thamer Alomayri, Ghulam Dastgeer, Yasir Javed, Naveed Akhter Shad et al. "High performance and gate-controlled GeSe/HfS2 negative differential resistance device". RSC Advances 12, n.º 3 (2022): 1278–86. http://dx.doi.org/10.1039/d1ra07276e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Saraiva-Souza, Aldilene, Manuel Smeu, José Gadelha da Silva Filho, Eduardo Costa Girão y Hong Guo. "Tuning the electronic and quantum transport properties of nitrogenated holey graphene nanoribbons". Journal of Materials Chemistry C 5, n.º 45 (2017): 11856–66. http://dx.doi.org/10.1039/c7tc03424e.

Texto completo
Resumen
Strong negative differential resistance (NDR) behavior with a remarkable current peak-to-valley ratio for armchair C2N-hNRs and non-linear current–voltage characteristics for zigzag C2N-hNRs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Shao, Zhi-An, Wolfgang Porod y Craig S. Lent. "2D Finite Element Method Simulation of Lateral Resonant Tunneling Devices". VLSI Design 6, n.º 1-4 (1 de enero de 1998): 131–35. http://dx.doi.org/10.1155/1998/97564.

Texto completo
Resumen
Using the finite element method, we investigate device applications of lateral resonant tunneling structures which consist of a transmission channel with attached resonators. Such structure exhibits resonance-antiresonance transmission features which may be engineered to achieve desired device properties. We show that the valley current can be reduced in such 2D lateral resonant tunneling devices, resulting in an improved current peak-to-valley ratio.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Yan-Kuin Su, Jia-Rong Chang, Yan-Ten Lu, Chuing-Liang Lin, Kuo-Ming Wu y Zheng-Xian Wu. "Novel AlInAsSb/InGaAs double-barrier resonant tunneling diode with high peak-to-valley current ratio at room temperature". IEEE Electron Device Letters 21, n.º 4 (abril de 2000): 146–48. http://dx.doi.org/10.1109/55.830963.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Sun, Yiming, Wei Gao, Xueping Li, Congxin Xia, Hongyu Chen, Li Zhang, Dongxiang Luo, Weijun Fan, Nengjie Huo y Jingbo Li. "Anti-ambipolar behavior and photovoltaic effect in p-MoTe2/n-InSe heterojunctions". Journal of Materials Chemistry C 9, n.º 32 (2021): 10372–80. http://dx.doi.org/10.1039/d1tc02497c.

Texto completo
Resumen
The MoTe2/InSe heterojunctions exhibit an anti-ambipolar behavior with high peak-to-valley current ratio (>103) and a high self-driven photodetection performance with photoresponsivity of 15.4 mA W−1 and specific detectivity up to ∼3.02 × 1014 Jones.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Ramesh, Anisha, Paul R. Berger y Roger Loo. "High 5.2 peak-to-valley current ratio in Si/SiGe resonant interband tunnel diodes grown by chemical vapor deposition". Applied Physics Letters 100, n.º 9 (27 de febrero de 2012): 092104. http://dx.doi.org/10.1063/1.3684834.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Soderstrom, J. R., D. H. Chow y T. C. McGill. "InAs/AlSb double-barrier structure with large peak-to-valley current ratio: a candidate for high-frequency microwave devices". IEEE Electron Device Letters 11, n.º 1 (enero de 1990): 27–29. http://dx.doi.org/10.1109/55.46920.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Chen, D. Y., Y. Sun, Y. J. He, L. Xu y J. Xu. "Resonant tunneling with high peak to valley current ratio in SiO2/nc-Si/SiO2 multi-layers at room temperature". Journal of Applied Physics 115, n.º 4 (28 de enero de 2014): 043703. http://dx.doi.org/10.1063/1.4861737.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Sugaya, Takeyoshi, Kee-Youn Jang, Cheol-Koo Hahn, Mutsuo Ogura, Kazuhiro Komori, Akito Shinoda y Kenji Yonei. "Enhanced peak-to-valley current ratio in InGaAs∕InAlAs trench-type quantum-wire negative differential resistance field-effect transistors". Journal of Applied Physics 97, n.º 3 (febrero de 2005): 034507. http://dx.doi.org/10.1063/1.1851595.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Inata, Tsuguo, Shunichi Muto, Yoshiaki Nakata, Shigehiko Sasa, Toshio Fujii y Satoshi Hiyamizu. "A Pseudomorphic In0.53Ga0.47As/AlAs Resonant Tunneling Barrier with a Peak-to-Valley Current Ratio of 14 at Room Temperature". Japanese Journal of Applied Physics 26, Part 2, No. 8 (20 de agosto de 1987): L1332—L1334. http://dx.doi.org/10.1143/jjap.26.l1332.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Jiun-Tsuen Lai y J. Y. Lee. "Ultrahigh and controllable drain current peak-to-valley ratio in negative resistance field-effect transistors with a strained InGaAs channel". IEEE Electron Device Letters 15, n.º 9 (septiembre de 1994): 333–35. http://dx.doi.org/10.1109/55.311125.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Tsai, H. H., Y. K. Su, H. H. Lin, R. L. Wang y T. L. Lee. "P-N double quantum well resonant interband tunneling diode with peak-to-valley current ratio of 144 at room temperature". IEEE Electron Device Letters 15, n.º 9 (septiembre de 1994): 357–59. http://dx.doi.org/10.1109/55.311133.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Yang, Chih-Chin, Kuang-Chih Huang y Yan-Kuin Su. "High Peak-to-Valley Current Ratio GaAs/InGaAs/InAs Double Stepped Quantum Well Resonant Interband Tunneling Diodes at Room Temperature". Japanese Journal of Applied Physics 35, Part 2, No. 5A (1 de mayo de 1996): L535—L537. http://dx.doi.org/10.1143/jjap.35.l535.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Niu, Ping Juan, Hai Rong Hu, Hong Wei Liu, Wen Xin Wang y Xun Zhong Shang. "Study on Opto-Electronic Integration of Resonant Tunnelling Diodes". Solid State Phenomena 121-123 (marzo de 2007): 533–36. http://dx.doi.org/10.4028/www.scientific.net/ssp.121-123.533.

Texto completo
Resumen
We designed the monolithic opto-electronic integrated circuit composed by Resonant Tunnelling Diodes (RTD) and Heterojunction Phototransistor (HPT). Circuit simulation of RTD and HPT integration is firstly processed. The material structure and technological process of the device is introduced in detail. A good characteristic is obtained with high Peak-to-valley current ratio.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Shahhoseini, Ali, Samane Ghorbanalipour y Rahim Faez. "Detemining the Thickness of Barriers and Well of Resonance Tunneling Diodes by Specified I-V Characteristic". Applied Mechanics and Materials 110-116 (octubre de 2011): 5464–70. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.5464.

Texto completo
Resumen
In this paper, a method of determining physical dimension of Double Barrier Quantum Well (DBQW) of Resonance Tunneling Diodes (RTDs) is presented by using I-V characteristic governing on them. In this procedure, first we have used performance metrics related to RTDs I-V characteristic such as Peak to Valley Current Ratio (PVCR), peak current density (JP), valley current density (JV) and Voltage Swing (VS), and by some other arbitrary points, we have fitted a curve to the RTD current-voltage equation by MATLAB software. Then we have obtained the physical parameter of I-V equation and adjusted some of them with modification coefficients. Next, by choosing the material of barriers and the well and amount of doping, we have calculated the thicknesses of both. To review the mentioned method, the experimental result of I-V characteristic of the sample structure DBQW is considered and we have come to this idea that the dimensions gained out of this method are highly correlated with those of the experimental sample.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Yarn, K. F. "Negative Differential Resistance Behavior in Delta-Doped AlInP Structure Grown by MOCVD". Active and Passive Electronic Components 25, n.º 3 (2002): 245–48. http://dx.doi.org/10.1080/08827510213497.

Texto completo
Resumen
An AlInP delta-doped schottky diode exhibiting negative differential resistance (NDR) behavior is demonstrated for the first time. The NDR characteristics with a peak to valley ratio of 5.5 and peak current density of1KA/cm2were achieved at room temperature. In addition, the maximum available power is estimated up to5W/cm2. The mechanism for such performance is phenomenologically analyzed by the combination of resonant interband tunneling (RIT) and thermionic emission processes associated with tunneling effect on the metal-semiconductor (MS) interface.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Yang, Rui Q., Jian Lu, J. M. Xu y D. J. Day. "Experimental investigation of the influence of the barrier thickness in double-quantum-well resonant interband tunnel diodes". Canadian Journal of Physics 70, n.º 10-11 (1 de octubre de 1992): 1013–16. http://dx.doi.org/10.1139/p92-162.

Texto completo
Resumen
The influence of the central barrier thickness to current–voltage characteristics of double-quantum-well (DQW) resonant interband tunnel diodes are experimentally investigated at room temperature. A peak to valley ratio greater than 100:1 at room temperature is obtained in the device with a central barrier thickness of 20 Å and a well width of 40 Å. (1 Å = 10−10 m).
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Shin, Sunhae y Kyung Rok Kim. "Multiple negative differential resistance devices with ultra-high peak-to-valley current ratio for practical multi-valued logic and memory applications". Japanese Journal of Applied Physics 54, n.º 6S1 (30 de abril de 2015): 06FG07. http://dx.doi.org/10.7567/jjap.54.06fg07.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Qiang Li, Yu Han, Xing Lu y Kei May Lau. "GaAs-InGaAs-GaAs Fin-Array Tunnel Diodes on (001) Si Substrates With Room-Temperature Peak-to-Valley Current Ratio of 5.4". IEEE Electron Device Letters 37, n.º 1 (enero de 2016): 24–27. http://dx.doi.org/10.1109/led.2015.2499603.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Zhang, HePeng, JunShuai Xue, ZhiPeng Sun, LanXing Li, JiaJia Yao, Fang Liu, XueYan Yang et al. "1039 kA/cm2 peak tunneling current density in GaN-based resonant tunneling diode with a peak-to-valley current ratio of 1.23 at room temperature on sapphire substrate". Applied Physics Letters 119, n.º 15 (11 de octubre de 2021): 153506. http://dx.doi.org/10.1063/5.0064790.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Chang-Luen Wu, Wei-Chou Hsu, Hir-Ming Shieh y Ming-Shang Tsai. "A novel /spl delta/-doped GaAs/lnGaAs real-space transfer transistor with high peak-to-valley ratio and high current driving capability". IEEE Electron Device Letters 16, n.º 3 (marzo de 1995): 112–14. http://dx.doi.org/10.1109/55.363241.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Mehdi, Imran y George Haddad. "Lattice matched and pseudomorphic In0.53Ga0.47As/InxAl1−xAs resonant tunneling diodes with high current peak‐to‐valley ratio for millimeter‐wave power generation". Journal of Applied Physics 67, n.º 5 (marzo de 1990): 2643–46. http://dx.doi.org/10.1063/1.345472.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Fang, Y. K., K. H. Chen, C. R. Liu, J. D. Hwang, K. S. Wu y W. R. Liou. "Observation of very high peak-to-valley current ratio (≥9.4) in amorphous silicon/silicon-carbide double barrier structure with barrier enhancement layer". IEEE Journal of Quantum Electronics 30, n.º 10 (1994): 2293–96. http://dx.doi.org/10.1109/3.328596.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Yang, Maolong, Yao Lu, Qiancui Zhang, Zhao Han, Yichi Zhang, Maliang Liu, Ningning Zhang, Huiyong Hu y Liming Wang. "Charge transport behaviors in a multi-gated WSe2/MoS2 heterojunction". Applied Physics Letters 121, n.º 4 (25 de julio de 2022): 043501. http://dx.doi.org/10.1063/5.0097390.

Texto completo
Resumen
Heterojunctions and multi-gated structures facilitate the fabrication of high-performance and multifunctional transistors. Here, a WSe2/MoS2 heterojunction structure transistor with a back gate and two top gates is proposed. The back gate controls the carrier transport of the entire heterojunction channel, and the top gates independently control the carrier transports of MoS2 or WSe2 channels. The rectification direction of the heterojunction device could be reversed, and the rectification ratio could be modulated from 10−4 to 104 by changing the back-gate voltage. In addition, an evident negative-differential transconductance phenomenon with a current peak and a current valley are observed in the back-gate transfer characteristic curve, which results from the different control ability of the same gate voltage to the Fermi levels in MoS2 and WSe2. The current peak can be obviously modulated and eliminated by the MoS2 top gate, while the WSe2 top gate can control the position of the current valley from −8 to +12 V, which clearly supports the heterostructure energy band model. Moreover, the diversity of output states under multi-gate modulation makes applications in logic circuits possible. These results demonstrate the potential of this approach for the development of next-generation electronic functional devices.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Ma, C. L. F., M. J. Deen y R. H. S. Hardy. "Excess currents as a result of trap-assisted tunneling in double barrier resonant tunneling diodes". Canadian Journal of Physics 70, n.º 10-11 (1 de octubre de 1992): 1005–12. http://dx.doi.org/10.1139/p92-161.

Texto completo
Resumen
In this paper, we propose trap-assisted tunneling (TAT) to account for the discrepancy between theoretical predictions and measured valley currents (also called excess currents) in double barrier resonant tunneling diodes (DB RTDs) with observed generation–recombination noise spectra. This proposed mechanism in DB RTDs is required, since predictions of excess currents from the models involving no gap states, such as quantum coherent tunneling, are too low. The model is also supported by the observed strong correlation between excess current and low frequency noise spectra. The trap states are assumed to be at or near the interface between the emitter and the first barrier in DB structures. The electrons trapped in the trap states emit out to tunnel through the double barriers. The empty trap states are then refilled by the electrons from the conduction band of the emitter. The conservation of the energy and momentum are incorporated through the emission–absorption of phonons. Based on these mechanisms, we propose a semiempirical formula for calculating valley current with three parameters, which are related to some physical parameters. A simple semiphysical model is set up to justify the three parameters and the detailed derivation is given. This two-step TAT currents are calculated for our examples of AlAs–GaAs–AlAs DB RTDs and are found to be in agreement with the measured excess currents. The variation of excess currents with temperature is also discussed. Improvement of the peak-to-valley current ratio, among other device design and fabrication considerations, depends on the reduction of these trap states.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Laruelle, F. y G. Faini. "Thermally desactivated resonant current in high peak to valley current ratio (69:1) GaAs/GaAlAs resonant tunneling structures: A spectroscopic view of the emitter density of state". Solid-State Electronics 37, n.º 4-6 (abril de 1994): 987–90. http://dx.doi.org/10.1016/0038-1101(94)90342-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Syzranov, V. S., O. A. Klimenko, A. S. Ermolov, I. P. Kazakov, S. S. Shmelev, V. I. Egorkin y V. N. Murzin. "Single-well resonant-tunneling diode heterostructures based on In0.53Ga0.47As/AlAs/InP with the peak-to-valley current ratio of 22:1 at room temperature". Bulletin of the Lebedev Physics Institute 40, n.º 8 (agosto de 2013): 240–43. http://dx.doi.org/10.3103/s106833561308006x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Yang, Zhang, Zeng Yi-Ping, Ma Long, Wang Bao-Qiang, Zhu Zhan-Ping, Wang Liang-Chen y Yang Fu-Hua. "Nanoelectronic devices—resonant tunnelling diodes grown on InP substrates by molecular beam epitaxy with peak to valley current ratio of 17 at room temperature". Chinese Physics 15, n.º 6 (31 de mayo de 2006): 1335–38. http://dx.doi.org/10.1088/1009-1963/15/6/034.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía