Literatura académica sobre el tema "Peak prediction"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Peak prediction".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Peak prediction"
Schmitt, Thomas, Tobias Rodemann y Jürgen Adamy. "The Cost of Photovoltaic Forecasting Errors in Microgrid Control with Peak Pricing". Energies 14, n.º 9 (29 de abril de 2021): 2569. http://dx.doi.org/10.3390/en14092569.
Texto completoXie, Lianku, Qinglei Yu, Jiandong Liu, Chunping Wu y Guang Zhang. "Prediction of Ground Vibration Velocity Induced by Long Hole Blasting Using a Particle Swarm Optimization Algorithm". Applied Sciences 14, n.º 9 (30 de abril de 2024): 3839. http://dx.doi.org/10.3390/app14093839.
Texto completoNakashima, Toshihisa, Takayuki Ohno, Keiichi Koido, Hironobu Hashimoto y Hiroyuki Terakado. "Accuracy of predicting the vancomycin concentration in Japanese cancer patients by the Sawchuk–Zaske method or Bayesian method". Journal of Oncology Pharmacy Practice 26, n.º 3 (29 de mayo de 2019): 543–48. http://dx.doi.org/10.1177/1078155219851834.
Texto completoGerber, Brandon S., James L. Tangler, Earl P. N. Duque y J. David Kocurek. "Peak and Post-Peak Power Aerodynamics from Phase VI NASA Ames Wind Turbine Data". Journal of Solar Energy Engineering 127, n.º 2 (25 de abril de 2005): 192–99. http://dx.doi.org/10.1115/1.1862260.
Texto completoYang, Hyunje, Honggeun Lim, Haewon Moon, Qiwen Li, Sooyoun Nam, Byoungki Choi y Hyung Tae Choi. "Identifying the Minimum Number of Flood Events for Reasonable Flood Peak Prediction of Ungauged Forested Catchments in South Korea". Forests 14, n.º 6 (30 de mayo de 2023): 1131. http://dx.doi.org/10.3390/f14061131.
Texto completoKeith, David y Juan Moreno-Cruz. "Pitfalls of coal peak prediction". Nature 469, n.º 7331 (enero de 2011): 472. http://dx.doi.org/10.1038/469472b.
Texto completoMandoli, Giulia Elena, Federico Landra, Benedetta Chiantini, Carlotta Sciaccaluga, Maria Concetta Pastore, Marta Focardi, Luna Cavigli et al. "Tricuspid Regurgitation Velocity and Mean Pressure Gradient for the Prediction of Pulmonary Hypertension According to the New Hemodynamic Definition". Diagnostics 13, n.º 16 (8 de agosto de 2023): 2619. http://dx.doi.org/10.3390/diagnostics13162619.
Texto completoSoroka, Juliana, Larry Grenkow, Héctor Cárcamo, Scott Meers, Shelley Barkley y John Gavloski. "An assessment of degree-day models to predict the phenology of alfalfa weevil (Coleoptera: Curculionidae) on the Canadian Prairies". Canadian Entomologist 152, n.º 1 (21 de diciembre de 2019): 110–29. http://dx.doi.org/10.4039/tce.2019.71.
Texto completoLi, Haitao, Guo Yu, Yizhu Fang, Yanru Chen, Chenyu Wang y Dongming Zhang. "Studies on natural gas reserves multi-cycle growth law in Sichuan Basin based on multi-peak identification and peak parameter prediction". Journal of Petroleum Exploration and Production Technology 11, n.º 8 (18 de junio de 2021): 3239–53. http://dx.doi.org/10.1007/s13202-021-01212-3.
Texto completoZhang, Yang. "Peak Traffic Prediction Using Nonparametric Approaches". Advanced Materials Research 378-379 (octubre de 2011): 196–99. http://dx.doi.org/10.4028/www.scientific.net/amr.378-379.196.
Texto completoTesis sobre el tema "Peak prediction"
Al-Rahamneh, Harran Qoblan Mefleh. "Perceived exertion relationships and prediction of peak oxygen uptake in able-bodied and paraplegic individuals". Thesis, University of Exeter, 2010. http://hdl.handle.net/10036/3005.
Texto completoKiuchi, Ryota. "New Ground Motion Prediction Equations for Saudi Arabia and their Application to Probabilistic Seismic Hazard Analysis". Kyoto University, 2020. http://hdl.handle.net/2433/253095.
Texto completoThornton, Craig Matthew. "Effects of Land Development on Peak Runoff Rate and its Prediction for Brigalow Catchments in Central Queensland, Australia". Thesis, Griffith University, 2012. http://hdl.handle.net/10072/365709.
Texto completoThesis (Masters)
Master of Philosophy (MPhil)
Griffith School of Engineering
Science, Environment, Engineering and Technology
Full Text
Birch, Wiliiam John. "The prediction of peak particle velocity vibration levels in underground structures that arise as the result of surface blasting". Thesis, University of Leeds, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.659028.
Texto completoWang, Zijian. "DM EMI Noise Analysis for Single Channel and Interleaved Boost PFC in Critical Conduction Mode". Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/32719.
Texto completoMaster of Science
Akeil, Salah. "Comparative Study On Ground Vibrations Prediction By Statistical And Neural Networks Approaches At Tuncbilek Coal Mine, Panel Byh". Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605058/index.pdf.
Texto completobilek Coal Mine, Panel BYH, were measured to find out the site-specific attenuation and to assess the structural damage risk. A statistical approach is applied to the collected data, and from the data analysis an attenuation relationship is established to be used in predicting the peak particle velocity as well as to calculate the maximum allowable charge per delay. The values of frequencies are also analyzed to investigate the damage potential to the structures of Tunç
bilek Township. A new approach to predict the peak particle velocity is also proposed in this research study. A neural network technique from the branch of the artificial intelligence is put forward as an alternative approach to the statistical technique. Findings of this study indicate, according to USBM (1980) criteria, that there is no damage risk to the structures in Tunç
bilek Township induced by bench blasting performed at Tunç
bilek coal mine, Panel BYH. Therefore, it is concluded that the damage claims put forward by the inhabitants of Tunç
bilek township had no scientific bases. It is also concluded that the empirical statistical technique is not the only acceptable approach that can be taken into account in predicting the peak particle velocity. An alternative and interesting neural network approach can also give a satisfactory accuracy in predicting peak particle velocity when compared to a set of additional recorded data of PPV.
Goutham, Mithun. "Machine learning based user activity prediction for smart homes". The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1595493258565743.
Texto completoChen, Yuyao. "Contribution of machine learning to the prediction of building energy consumption". Electronic Thesis or Diss., Lyon, INSA, 2023. http://www.theses.fr/2023ISAL0119.
Texto completoThe ongoing energy transition, pivotal to mitigate global warming, could significantly benefit from advances in building energy consumption prediction. With the advent of big data, data-driven models are increasingly effective in forecasting tasks and machine learning is probably the most efficient method to build such predictive models nowadays. In this work, we provide a comprehensive review of machine learning techniques for forecasting, regarding preprocessing as well as state-of-the-art models such as deep neural networks. Despite the achievements of state-of-art models, accurately predicting high-fluctuation electricity consumption still remains a challenge. To tackle this challenge, we propose to explore two paths: the utilization of soft-DTW loss functions and the inclusion of exogenous variables. By applying the soft-DTW loss function with a residual LSTM neural network on a real dataset, we observed significant improvements in capturing the patterns of high-fluctuation load series, especially in peak prediction. However, conventional error metrics prove insufficient in adequately measuring this ability. We therefore introduce confusion matrix analysis and two new error metrics: peak position error and peak load error based on the DTW algorithm. Our findings reveal that soft-DTW outperforms MSE and MAE loss functions with lower peak position and peak load error. We also incorporate soft-DTW loss function with MSE, MAE, and Time Distortion Index. The results show that combining the MSE loss function performs the best and helps alleviate the problem of overestimated and sharp peaks problems occured. By adding exogenous variables with soft-DTW loss functions, the inclusion of calendar variables generally enhances the model’s performance, particularly when these variables exhibit higher Pearson’s correlation coefficients with the target variable. However, when the correlation between the calendar variables and the historical load patterns is relatively low, their inclusion has a negative impact on the model’s performance. A similar relationship is observed with weather variables
Hiesböcková, Tereza. "Předpovídání povodňových průtoků v měrných profilech Borovnice - Dalečín". Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2012. http://www.nusl.cz/ntk/nusl-225458.
Texto completoPreisler, Frederik. "Predicting peak flows for urbanising catchments". Thesis, Queensland University of Technology, 1992.
Buscar texto completoLibros sobre el tema "Peak prediction"
Campeau, Gail Annette. Prediction of shotcrete damage through the analysis of peak particle velocity. Sudbury, Ont: Laurentian University, School of Engineering, 1999.
Buscar texto completoFuture scenarios: How communities can adapt to peak oil and climate change. Totnes: Green, 2009.
Buscar texto completoS, Rohatgi Upendra y U.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research. Division of Systems Research., eds. Bias in peak clad temperature predictions due to uncertainties in modeling of ECC bypass and dissolved non-condensable gas phenomena. Washington, DC: Division of Systems Research, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1990.
Buscar texto completoHolmgren, David. Future Scenarios: How Communities Can Adapt to Peak Oil and Climate Change. Chelsea Green Publishing, 2012.
Buscar texto completoPrediction of peak VO ́values from 9-minute run distances in young males, 9-14 years. 1985.
Buscar texto completoPrediction of peak VO2ș values from 9-minute run distances in young males, 9-14 years. 1985.
Buscar texto completoLynch, Michael C. The “Peak Oil” Scare and the Coming Oil Flood. ABC-CLIO, LLC, 2016. http://dx.doi.org/10.5040/9798400605017.
Texto completoComparison of a prediction of maximal oxygen consumption by the YMCA Submaximal Bicycle Ergometer Test to a measurement of peak oxygen consumption. 1987.
Buscar texto completoComparison of a prediction of maximal oxygen consumption by the YMCA Submaximal Bicycle Ergometer Test to a measurement of peak oxygen consumption. 1985.
Buscar texto completoPeak oxygen deficit as a predictor of sprint and middle-distance track performance. 1992.
Buscar texto completoCapítulos de libros sobre el tema "Peak prediction"
Wu, Wenjie, Heping Jin, Gan Wang, Yihan Li, Wanru Zeng, Feng Liu, Huiheng Luo y Tao Liang. "Research on Wind Power Peak Prediction Method". En Lecture Notes in Electrical Engineering, 643–51. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1068-3_66.
Texto completoScherbart, Alexandra, Wiebke Timm, Sebastian Böcker y Tim W. Nattkemper. "Improved Mass Spectrometry Peak Intensity Prediction by Adaptive Feature Weighting". En Advances in Neuro-Information Processing, 513–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02490-0_63.
Texto completoGoodwin, Morten y Anis Yazidi. "A Pattern Recognition Approach for Peak Prediction of Electrical Consumption". En Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, 265–75. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-662-44654-6_26.
Texto completoXue, Weixian y Liangmin Wang. "Prediction of Carbon Peak in Shaanxi Province and Its Cities". En Atlantis Highlights in Intelligent Systems, 938–45. Dordrecht: Atlantis Press International BV, 2023. http://dx.doi.org/10.2991/978-94-6463-200-2_97.
Texto completoKanwar, Neeraj, Divay Bargoti y Vinay Kumar Jadoun. "Power Transformer Summer Peak Load Prediction Using SCADA and Supervised Learning". En Lecture Notes in Electrical Engineering, 215–21. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1476-7_21.
Texto completoLi, Yajing, Jieren Cheng, Yuqing Kou, Dongwan Xia y Victor S. Sheng. "Prediction of Passenger Flow During Peak Hours Based on Deep Learning". En Smart Innovation, Systems and Technologies, 213–28. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-7161-9_17.
Texto completoSun, Yanli, Di Zhang y Qiang Liu. "Prediction of peak carbon emission in Liaoning Province based on energy consumption". En Advances in Urban Engineering and Management Science Volume 2, 435–41. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003345329-57.
Texto completoMahmud, Khizir, Weilun Peng, Sayidul Morsalin y Jayashri Ravishankar. "A Day-Ahead Power Demand Prediction for Distribution-Side Peak Load Management". En Proceedings of International Joint Conference on Computational Intelligence, 305–15. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7564-4_27.
Texto completoPeteuil, Christophe, Simon Carladous y Nicolle Mathys. "Peak Discharge Prediction in Torrential Catchments of the French Pyrenees: The ANETO Method". En Management of Mountain Watersheds, 93–110. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-2476-1_8.
Texto completoRovelli, Antonio. "Strong Ground Motions in Italy: Accelerogram Spectral Properties and Prediction of Peak Values". En Strong Ground Motion Seismology, 333–54. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-017-3095-2_11.
Texto completoActas de conferencias sobre el tema "Peak prediction"
Singh, Rayman Preet, Peter Xiang Gao y Daniel J. Lizotte. "On hourly home peak load prediction". En 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm). IEEE, 2012. http://dx.doi.org/10.1109/smartgridcomm.2012.6485977.
Texto completoKhafaf, Nameer Al y Ayman H. El-Hag. "Prediction of leakage current peak value". En 2018 11th International Symposium on Mechatronics and its Applications (ISMA). IEEE, 2018. http://dx.doi.org/10.1109/isma.2018.8330118.
Texto completoWeiss, M. A., A. Masarie y R. Beard. "Peak Deviation from Prediction in Atomic Clocks". En 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum. IEEE, 2007. http://dx.doi.org/10.1109/freq.2007.4319231.
Texto completoLiu, Jinxiang y Laura E. Brown. "Prediction of Hour of Coincident Daily Peak Load". En 2019 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). IEEE, 2019. http://dx.doi.org/10.1109/isgt.2019.8791587.
Texto completoAi, Songpu, Antorweep Chakravorty y Chunming Rong. "Evolutionary Ensemble LSTM based Household Peak Demand Prediction". En 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). IEEE, 2019. http://dx.doi.org/10.1109/icaiic.2019.8668971.
Texto completoLiu, Jianlei y Kurt J. Marfurt. "Thin bed thickness prediction using peak instantaneous frequency". En SEG Technical Program Expanded Abstracts 2006. Society of Exploration Geophysicists, 2006. http://dx.doi.org/10.1190/1.2370418.
Texto completoMa, Yingwen y Li Zhou. "Real-time flutter boundary prediction using peak-hold method". En Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XII, editado por Peter J. Shull. SPIE, 2018. http://dx.doi.org/10.1117/12.2301241.
Texto completoTieleman, H. W., M. A. K. Elsayed y M. R. Hajj. "Prediction of Peak Wind Loads on Low Rise Structures". En Solutions to Coastal Disasters Conference 2005. Reston, VA: American Society of Civil Engineers, 2005. http://dx.doi.org/10.1061/40774(176)49.
Texto completoChiodo, E. y D. Lauria. "Probabilistic description and prediction of electric peak power demand". En 2012 Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS). IEEE, 2012. http://dx.doi.org/10.1109/esars.2012.6387418.
Texto completoIslam, Shafiqul, James Leech, Charles C. Y. Lin y Lukas Chrostowski. "Peak Blood Glucose Prediction Algorithm Following a Meal Intake". En 2007 Canadian Conference on Electrical and Computer Engineering. IEEE, 2007. http://dx.doi.org/10.1109/ccece.2007.149.
Texto completoInformes sobre el tema "Peak prediction"
Ronstadt, Jackie A. Post-Wildfire Peak Discharge Prediction Methods in Northern New Mexico. Office of Scientific and Technical Information (OSTI), diciembre de 2017. http://dx.doi.org/10.2172/1414163.
Texto completoSi, Hongjun, Saburoh Midorikawa y Tadahiro Kishida. Development of NGA-Sub Ground-Motion Model of 5%-Damped Pseudo-Spectral Acceleration Based on Database for Subduction Earthquakes in Japan. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, diciembre de 2020. http://dx.doi.org/10.55461/lien3652.
Texto completoArhin, Stephen, Babin Manandhar, Hamdiat Baba Adam y Adam Gatiba. Predicting Bus Travel Times in Washington, DC Using Artificial Neural Networks (ANNs). Mineta Transportation Institute, abril de 2021. http://dx.doi.org/10.31979/mti.2021.1943.
Texto completoWells, Beric, Scott Cooley y Joseph Meacham. Prediction of Peak Hydrogen Concentrations for Deep Sludge Retrieval in Tanks AN-101 and AN-106 from Historical Data of Spontaneous Gas Release Events. Office of Scientific and Technical Information (OSTI), octubre de 2013. http://dx.doi.org/10.2172/1148634.
Texto completoLinker, Taylor y Timothy Jacobs. PR-457-18204-R01 Variable Fuel Effects on Legacy Compressor Engines Phase IV - Predictive NOx Modeling. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), mayo de 2019. http://dx.doi.org/10.55274/r0011584.
Texto completoHuang, Tao y Venkatesh Merwade. Developing Customized NRCS Unit Hydrographs (Finley UHs) for Ungauged Watersheds in Indiana. Purdue University, 2023. http://dx.doi.org/10.5703/1288284317644.
Texto completoStewart, Charles W., Stacey A. Hartley, Perry A. Meyer y Beric E. Wells. Predicting Peak Hydrogen Concentrations from Spontaneous Gas Releases in Hanford Waste Tanks. Office of Scientific and Technical Information (OSTI), julio de 2005. http://dx.doi.org/10.2172/15016741.
Texto completoDerdzinski, Pat, Dale Thoreson y Larry Tranel. NE Iowa’s Experience with Predictive Equation for Alfalfa Quality (PEAQ). Ames (Iowa): Iowa State University, enero de 2008. http://dx.doi.org/10.31274/ans_air-180814-887.
Texto completoDinovitzer. L52243 Modeling of Delayed Hydrogen Cracking for In-Service Welds. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), marzo de 2005. http://dx.doi.org/10.55274/r0010916.
Texto completoGlover, Austin y Dusty Brooks. Comparison of Side-on Peak Overpressure Predictions and Measurements for Type IV Composite Overwrapped Pressure Vessel Catastrophic Failure. Office of Scientific and Technical Information (OSTI), enero de 2023. http://dx.doi.org/10.2172/2004890.
Texto completo