Literatura académica sobre el tema "PDMS surface"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "PDMS surface".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "PDMS surface"
Akiyama, Yoshikatsu, Masayuki Yamato y Teruo Okano. "Preparation of Poly(N-isopropylacrylamide) Grafted Polydimethylsiloxane by Using Electron Beam Irradiation". Journal of Robotics and Mechatronics 25, n.º 4 (20 de agosto de 2013): 631–36. http://dx.doi.org/10.20965/jrm.2013.p0631.
Texto completoKemkemer, Ralf, Zhang Zenghao, Yang Linxiao, Kiriaki Athanasopulu, Kerstin Frey, Zhishan Cui, Haijia Su y Liu Luo. "Surface modification of Polydimethylsiloxane by hydrogels for microfluidic applications". Current Directions in Biomedical Engineering 5, n.º 1 (1 de septiembre de 2019): 93–96. http://dx.doi.org/10.1515/cdbme-2019-0024.
Texto completoWang, Bin, J. Hugh Horton y Richard D. Oleschuk. "Sulfonated-polydimethylsiloxane (PDMS) microdevices with enhanced electroosmotic pumping and stability". Canadian Journal of Chemistry 84, n.º 4 (1 de abril de 2006): 720–29. http://dx.doi.org/10.1139/v06-044.
Texto completoLopera, S. y R. D. Mansano. "Plasma-Based Surface Modification of Polydimethylsiloxane for PDMS-PDMS Molding". ISRN Polymer Science 2012 (3 de abril de 2012): 1–5. http://dx.doi.org/10.5402/2012/767151.
Texto completoAzizipour, Neda, Rahi Avazpour, Mohamad Sawan, Abdellah Ajji y Derek H. Rosenzweig. "Surface Optimization and Design Adaptation toward Spheroid Formation On-Chip". Sensors 22, n.º 9 (21 de abril de 2022): 3191. http://dx.doi.org/10.3390/s22093191.
Texto completoSwart, Morne y Peter E. Mallon. "Hydrophobicity recovery of corona-modified superhydrophobic surfaces produced by the electrospinning of poly(methyl methacrylate)-graft-poly(dimethylsiloxane) hybrid copolymers". Pure and Applied Chemistry 81, n.º 3 (1 de enero de 2009): 495–511. http://dx.doi.org/10.1351/pac-con-08-08-15.
Texto completoRamlan, Nadiah, Saiful Irwan Zubairi y Mohamad Yusof Maskat. "Response Surface Optimisation of Polydimethylsiloxane (PDMS) on Borosilicate Glass and Stainless Steel (SS316) to Increase Hydrophobicity". Molecules 27, n.º 11 (25 de mayo de 2022): 3388. http://dx.doi.org/10.3390/molecules27113388.
Texto completoShi, Dongyan, Dan Ma, Feiqing Dong, Chen Zong, Liyue Liu, Dan Shen, Wenji Yuan, Xiangmin Tong, Hengwu Chen y Jinfu Wang. "Proliferation and multi-differentiation potentials of human mesenchymal stem cells on thermoresponsive PDMS surfaces grafted with PNIPAAm". Bioscience Reports 30, n.º 3 (15 de diciembre de 2009): 149–58. http://dx.doi.org/10.1042/bsr20090026.
Texto completoProtsak, Iryna S., Yevhenii M. Morozov, Dong Zhang y Volodymyr M. Gun’ko. "Surface Chemistry of Nanohybrids with Fumed Silica Functionalized by Polydimethylsiloxane/Dimethyl Carbonate Studied Using 1H, 13C, and 29Si Solid-State NMR Spectroscopy". Molecules 26, n.º 19 (1 de octubre de 2021): 5974. http://dx.doi.org/10.3390/molecules26195974.
Texto completoLin, Wei-Chih y Nur Mohd Razali. "Temporary Wettability Tuning of PCL/PDMS Micro Pattern Using the Plasma Treatments". Materials 12, n.º 4 (20 de febrero de 2019): 644. http://dx.doi.org/10.3390/ma12040644.
Texto completoTesis sobre el tema "PDMS surface"
Essö, Carola. "Modifying Polydimethylsiloxane (PDMS) surfaces". Thesis, Mälardalen University, Department of Biology and Chemical Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-491.
Texto completoThe aim of the project was to modify polydimethylsiloxane (PDMS) surfaces in order to minimize adsorption of proteins. PDMS is used in micro-fluidic devices that control the delivery of samples to a sensor chip in Biacore instrumentation. These instruments are used to characterize interactions between biomolecules with a detection principle based on surface plasmon resonance (SPR). To minimize adsorption of proteins poly-ethylene-oxide (PEO) based surfactants, were added to the buffer. The added PEO surfactants were P20, Pluronic F-127 and Brij 35. Interaction of these surfactants with the sensor chip in Biacore instruments was also examined. Creating a more hydrophilic surface layer on PDMS by oxidation was also examined.
When surfactants were continuously added to protein samples, as in dynamically coating of PDMS surfaces, Brij 35 resulted in the strongest reduction in protein adsorption. Brij 35 was also the surfactant that was easiest to remove from both PDMS and the sensor surfaces. Pluronic bound strongest to surfaces, and is most suitable when only adding surfactant to the buffer in a pre-coating step. All surfactants did reduce protein adsorption considerably (99% or more) and addition is necessary when working with protein solutions and hydrophobic surfaces as PDMS. Another alternative is oxidation of PDMS surface, which is an easy procedure that decreased the protein adsorption to about 10% compared to adsorption to untreated surface.
Thorslund, Sara. "Microfluidics in Surface Modified PDMS : Towards Miniaturized Diagnostic Tools". Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7270.
Texto completoWang, Xin C. "Surface wettability studies of PDMS using flame plasma treatment". Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/54483.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (p. 30).
The flame plasma treatment studied in this thesis was able to oxidize the surface of Polydimethylsiloxane (PDMS) in a fraction of a second. It was found to be a much faster way to modify PDMS surface wettability than the current technologies. The surface wettability of Polydimethylsiloxane (PDMS) treated with flame plasma was studied. The surface wettability was characterized by contact angle measurements using water and a surface tension liquid as the probe liquids. Two experimental parameters were varied in this investigation: a) distance from the PDMS surface to the inner flame cone; b) the dwell time of the PDMS under the flame. The study concluded that the same surface wettability can be achieved through different combinations of distance and dwell time. The shortest dwell time needed to induce a contact angle of 100 or less on the treated PDMS surface in this experimental setup was approximately 0.18 second. This study also found that over treatment of the PDMS surface in the flame plasma yielded a reversal treatment effect and decreased the surface wettability. The flame plasma yielded uniform contact angle measurements within 15% across the PDMS surface. The recovery mechanism in the treated PDMS surfaces was dominated by the diffusion of untreated polymers from the bulk PDMS to the treated surface. The results from this investigation demonstrated the potential for the flame plasma treatment to be used in rapid manufacturing of PDMS microfludic devices.
by Xin C. Wang.
S.B.
Khorasani, Mohammad Taghi. "Laser induced surface modifications of PDMS as a bio-compatible material". Thesis, Brunel University, 1997. http://bura.brunel.ac.uk/handle/2438/5206.
Texto completoRizvi, Syed Ali Shabi. "Water and radiation induced surface changes in PDMS and amino acid adsorption". Thesis, University of Liverpool, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.548789.
Texto completoForster, Simon. "Surface modification of PDMS-based microfluidic devices through plasma polymerisation : production and application". Thesis, University of Sheffield, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531221.
Texto completoBanerjee, Markus K. "Acoustic wave interactions with viscous liquids spreading in the acoustic path of a surface acoustic wave sensor". Thesis, Nottingham Trent University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302521.
Texto completoOlander, Björn. "Silicone biomaterials obtained by plasma treatment and subsequent surface hydrosilylation". Doctoral thesis, KTH, Fibre and Polymer Technology, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3698.
Texto completoThe need for safe and functional implants has led to anincreased demand for improved biomaterials. The performance invivo depends on the interaction between the biologicalsurrounding and the surface of the material. By tailoring thesurface of a material with suitable bulk properties,biomaterials with an ability to interact with the biologicalsystem in a specific and controlled way are obtained. Siliconeelastomers have been used as biomaterials for several decades,but it is widely recognized that they are difficult to modifyby the conventional methods used for organic polymers due tothe partly inorganic structure of silicone.
This thesis presents a strategy to obtain siliconebiomaterials by covalent coupling of molecules to the surfaceusing silicon chemistry. The first step is to introduce Si-Hgroups onto the surface of silicone elastomers by plasmatreatment. The second step is to react a terminal double bondof a molecule with the formed Si-H group by a catalyzedhydrosilylation reaction. The coupled molecule may eitherprovide the desired properties itself, or have a functionalitythat is able to couple another molecule with suitablecharacteristics.
The influence of plasma treatment in hydrogen, argon andoxygen on the silicone elastomer was characterized by X-rayphotoelectron spectroscopy (XPS). To quantify the effect ofplasma treatment, the method of ternary XPS diagrams wasdeveloped. It was found that undesired silica-like layers wereformed under severe treatment conditions. Argon plasma at lowpower and short treatment time was the most suitable parametersetting. Subsequent hydrosilylation grafting ofallyltetrafluoroethylether, aminopropylvinylether andN-vinylformamide showed that it was possible to functionalizethe surface via a covalent link to the surface. The primaryamino groups introduced onto the surface were accessible forfurther coupling reactions. Heparin surfaces were obtained by acoupling reaction with the introduced amino groups.
Keywords:Silicone elastomers, PDMS, XPS, ESCA, surfacemodification, plasma
Apaydin, Elif. "Microfabrication Techniques for Printing on PDMS Elastomers for Antenna and Biomedical Applications". The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1253138931.
Texto completoQin, Yubo. "Developing a Poly(Dimethylsiloxane) (PDMS)/SU-8 (Negative Photoresist) Hybrid Microfluidic System for Sensitive Detection of Circulating Tumour Cells". Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37892.
Texto completoLibros sobre el tema "PDMS surface"
R, Hilf E., Kammer F y Wien K, eds. PDMS and clusters: Proceedings of the 1st International Workshop on the Physics of Small Systems, held on the island of Wangerooge, Germany, September 8-12, 1986. Berlin: Springer-Verlag, 1987.
Buscar texto completoSpectral theory and geometric analysis: An international conference in honor of Mikhail Shubin's 65th birthday, July 29 - August 2, 2009, Northeastern University, Boston, Massachusetts. Providence, R.I: American Mathematical Society, 2010.
Buscar texto completoCapítulos de libros sobre el tema "PDMS surface"
Qiu, Wenjun, Chaoqun Wu y Zhigang Wu. "Surface Modification of PDMS in Microfluidic Devices". En Concise Encyclopedia of High Performance Silicones, 141–50. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118938478.ch10.
Texto completoJia, Ruokun, Juan Luo y Liying Zhen. "Copy the Super-Hydrophobic Honeycomb Structure to PDMS Surface". En Advances in Intelligent and Soft Computing, 787–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25194-8_92.
Texto completoLi, Lihua, Venkata Subu Mangipudi, Matthew Tirrell y Alphonsus V. Pocius. "Direct Measurement of Surface and Interfacial Energies of Glassy Polymers and Pdms". En Fundamentals of Tribology and Bridging the Gap Between the Macro- and Micro/Nanoscales, 305–29. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0736-8_20.
Texto completoCho, Woong, Yong Jun Ko, Yoo Min Ahn, Joon Yong Yoon y Nahm Gyoo Cho. "Surface Modification Effect of Wettability on the Performance of PDMS-Based Valveless Micropump". En Experimental Mechanics in Nano and Biotechnology, 297–300. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-415-4.297.
Texto completoKetata, M., A. Ayadi, Ch Bradai y N. Elkissi. "Effect of the Radial Flow and Average Molecular Weight on the Surface Defect in PDMS Extrusion". En Design and Modeling of Mechanical Systems—III, 623–29. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66697-6_60.
Texto completoWang, Bin, Sorin Nita, J. Hugh Horton y Richard D. Oleschuk. "Surface Modification of PDMS for Control of Electroosmotic Flow: Characterization Using Atomic and Chemical Force Microscopy". En Micro Total Analysis Systems 2002, 431–33. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0295-0_144.
Texto completoYang, Paul. "Minimal Surfaces in CR Geometry". En Geometric Analysis and PDEs, 253–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01674-5_6.
Texto completoWeinerfelt, Per. "Generation of Surface Grids Using Elliptic PDEs". En Multiblock Grid Generation, 45–47. Wiesbaden: Vieweg+Teubner Verlag, 1993. http://dx.doi.org/10.1007/978-3-322-87881-6_7.
Texto completoFornasier, M. "Compressive Algorithms—Adaptive Solutions of PDEs and Variational Problems". En Mathematics of Surfaces XIII, 143–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03596-8_9.
Texto completoDiop, El Hadji S. y Radjesvarane Alexandre. "Analysis of Intrinsic Mode Functions Based on Curvature Motion-Like PDEs". En Curves and Surfaces, 202–9. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22804-4_15.
Texto completoActas de conferencias sobre el tema "PDMS surface"
Ganapathy Subramani, Balasubramanian y Ponnambalam Selvaganapathy. "Surface Micromachined PDMS Microchannels". En ASME 2007 5th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2007. http://dx.doi.org/10.1115/icnmm2007-30169.
Texto completoHuang, Zhengyong, Feipeng Wang y Jian Li. "Transforming PDMS surface to super-hydrophobic by surface arc-discharge". En 2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM). IEEE, 2015. http://dx.doi.org/10.1109/icpadm.2015.7295266.
Texto completoAlmutairi, Zeyad, Carolyn Ren y David Johnson. "Effects of Hydrophobic Recovery of Plasma Treated PDMS Microchannels on Surface Tension Driven Flow". En ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-31243.
Texto completoIshibashi, G., K. Asada y S. Maruo. "Surface tension-driven autonomous tweezers using PDMS sheets". En 2013 International Symposium on Micro-NanoMechatronics and Human Science (MHS). IEEE, 2013. http://dx.doi.org/10.1109/mhs.2013.6710480.
Texto completoGoraus, Matej, Dusan Pudis, Daniel Jandura y Sofia Berezina. "PDMS-based waveguides with surface relief Bragg grating". En 20th Slovak-Czech-Polish Optical Conference on Wave and Quantum Aspects of Contemporary Optics, editado por Jarmila Müllerová, Dagmar Senderáková, Libor Ladányi y Ľubomír Scholtz. SPIE, 2016. http://dx.doi.org/10.1117/12.2264355.
Texto completoWang, Kaiying, Guangming Ouyang y Xuyuan Chen. "Surface modification and wettability of silicone PDMS film". En 2010 3rd Electronic System-Integration Technology Conference (ESTC). IEEE, 2010. http://dx.doi.org/10.1109/estc.2010.5642871.
Texto completoPark, Dong-su, Jiajun Xu y Kyoung-Su Park. "Wettability Control of PDMS Surface Coated on the Glass Using Ultrasonic Vibration Treatment". En ASME 2020 29th Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/isps2020-1954.
Texto completoHung, Lung-Hsin y Abraham P. Lee. "Optimization of Droplet Generation by Controlling PDMS Surface Hydrophobicity". En ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61737.
Texto completoAlmutairi, Zeyad, Carolyn Ren y Leonardo Simon. "Improving the Electrokinetic Properties of PDMS With Surface Treatments". En ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-31241.
Texto completoLee, S. y N. D. Spencer. "Influence of Surface Modification on Aqueous Lubrication of Elastomers". En World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63234.
Texto completoInformes sobre el tema "PDMS surface"
Alam, Todd M. IR Imaging of PDMS Degradation Thin Films on Metal Surfaces. Office of Scientific and Technical Information (OSTI), febrero de 2019. http://dx.doi.org/10.2172/1495429.
Texto completo