Literatura académica sobre el tema "Particle sensor"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Particle sensor".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Particle sensor"
Zhang, Siqi, Yucai Xie, Lianfeng Zhang, Yuwei Zhang, Shuyao Zhang, Chenzhao Bai y Wei Li. "Investigation of the Effect of Debris Position on the Detection Stability of a Magnetic Plug Sensor Based on Alternating Current Bridge". Sensors 24, n.º 1 (21 de diciembre de 2023): 55. http://dx.doi.org/10.3390/s24010055.
Texto completoFardi, B., B. MacGibbon, S. Tripathi y F. Moghadam. "Feasibility of an In-Situ Particle Monitor on a Tungsten LPCVD Reactor". Journal of the IEST 39, n.º 3 (31 de mayo de 1996): 25–30. http://dx.doi.org/10.17764/jiet.2.39.3.f109749056q17677.
Texto completoHuang, Ching-Hsuan, Jiayang He, Elena Austin, Edmund Seto y Igor Novosselov. "Assessing the value of complex refractive index and particle density for calibration of low-cost particle matter sensor for size-resolved particle count and PM2.5 measurements". PLOS ONE 16, n.º 11 (11 de noviembre de 2021): e0259745. http://dx.doi.org/10.1371/journal.pone.0259745.
Texto completoHong, Sung-Ho. "Numerical Approach and Verification Method for Improving the Sensitivity of Ferrous Particle Sensors with a Permanent Magnet". Sensors 23, n.º 12 (6 de junio de 2023): 5381. http://dx.doi.org/10.3390/s23125381.
Texto completoHagan, David H. y Jesse H. Kroll. "Assessing the accuracy of low-cost optical particle sensors using a physics-based approach". Atmospheric Measurement Techniques 13, n.º 11 (26 de noviembre de 2020): 6343–55. http://dx.doi.org/10.5194/amt-13-6343-2020.
Texto completoHong, Sung-Ho. "Numerical Analysis for Appropriate Positioning of Ferrous Wear Debris Sensors with Permanent Magnet in Gearbox Systems". Sensors 24, n.º 3 (26 de enero de 2024): 810. http://dx.doi.org/10.3390/s24030810.
Texto completoKittimanapun, Kritsada, Natthawut Laojamnongwong, Jetnipit Kaewjai, Chinorat Kobdaj y Wanchaloem Poonsawat. "Commissioning of Pixel Sensor Telescope for Monolithic Active Pixel Sensor Characterization". Journal of Physics: Conference Series 2653, n.º 1 (1 de diciembre de 2023): 012029. http://dx.doi.org/10.1088/1742-6596/2653/1/012029.
Texto completoYuan, Changrong, Zhongsheng Sun y Xiaoning Li. "Mechanism and Modeling of Contaminant Accumulation on Hot-Film Air Flow Sensor". Mathematical Problems in Engineering 2019 (19 de febrero de 2019): 1–15. http://dx.doi.org/10.1155/2019/6246259.
Texto completoSantos da Silva, Safire Torres, Nikola Jerance y Harijaona Lalao Rakotoarison. "Simulating metallic contamination in permanent magnets used in magnetic sensors". COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 38, n.º 5 (2 de septiembre de 2019): 1683–95. http://dx.doi.org/10.1108/compel-12-2018-0515.
Texto completoFan, Bin, Lianfu Wang, Yong Liu, Peng Zhang y Song Feng. "Simulation and Optimization Design of Inductive Wear Particle Sensor". Sensors 23, n.º 10 (19 de mayo de 2023): 4890. http://dx.doi.org/10.3390/s23104890.
Texto completoTesis sobre el tema "Particle sensor"
Ing, Garrick. "Distributed particle filters for object tracking in sensor networks". Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=98971.
Texto completoLatiff, Nurul Mu'azzah Abdul. "Particle swarm optimisation for clustering in wireless sensor networks". Thesis, University of Newcastle Upon Tyne, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.489298.
Texto completoIhler, Alexander T. (Alexander Thomas) 1976. "Inference in sensor networks : graphical models and particle methods". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/33206.
Texto completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 175-183).
Sensor networks have quickly risen in importance over the last several years to become an active field of research, full of difficult problems and applications. At the same time, graphical models have shown themselves to be an extremely useful formalism for describing the underlying statistical structure of problems for sensor networks. In part, this is due to a number of efficient methods for solving inference problems defined on graphical models, but even more important is the fact that many of these methods (such as belief propagation) can be interpreted as a set of message passing operations, for which it is not difficult to describe a simple, distributed architecture in which each sensor performs local processing and fusion of information, and passes messages locally among neighboring sensors. At the same time, many of the tasks which are most important in sensor networks are characterized by such features as complex uncertainty and nonlinear observation processes. Particle filtering is one common technique for dealing with inference under these conditions in certain types of sequential problems, such as tracking of mobile objects.
(cont.) However, many sensor network applications do not have the necessary structure to apply particle filtering, and even when they do there are subtleties which arise due to the nature of a distributed inference process performed on a system with limited resources (such as power, bandwidth, and so forth). This thesis explores how the ideas of graphical models and sample-based representations of uncertainty such as are used in particle filtering can be applied to problems defined for sensor networks, in which we must consider the impact of resource limitations on our algorithms. In particular, we explore three related themes. We begin by describing how sample-based representations can be applied to solve inference problems defined on general graphical models. Limited communications, the primary restriction in most practical sensor networks, means that the messages which are passed in the inference process must be approximated in some way. Our second theme explores the consequences of such message approximations, and leads to results with implications both for distributed systems and the use of belief propagation more generally.
(cont.) This naturally raises a third theme, investigating the optimal cost of representing sample-based estimates of uncertainty so as to minimize the communications required. Our analysis shows several interesting differences between this problem and traditional source coding methods. We also use the metrics for message errors to define lossy or approximate4 encoders, and provide an example encoder capable of balancing communication costs with a measure on inferential error. Finally, we put all of these three themes to work to solve a difficult and important task in sensor networks. The self-localization problem for sensors networks involves the estimation of all sensor positions given a set of relative inter-sensor measurements in the network. We describe this problem as a graphical model, illustrate the complex uncertainties involved in the estimation process, and present a method of finding for both estimates of the sensor positions and their remaining uncertainty using a sample-based message passing algorithm. This method is capable of incorporating arbitrary noise distributions, including outlier processes, and by applying our lossy encoding algorithm can be used even when communications is relatively limited.
(cont.) We conclude the thesis with a summary of the work and its contributions, and a description of some of the many problems which remain open within the field.
y Alexander T. Ihler.
Ph.D.
Zhang, Zheng. "RESISTIVE PULSE SENSORS FOR POLLEN PARTICLE MEASUREMENTS". University of Akron / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=akron1145070142.
Texto completoCampbell, Steven Conner. "DETERMINATION OF ACOUSTIC RADIATION EFFICIENCY VIA PARTICLE VELOCITY SENSOR WITH APPLICATIONS". UKnowledge, 2019. https://uknowledge.uky.edu/me_etds/133.
Texto completoJagtiani, Ashish V. "DEVELOPMENT OF NOVEL MULTICHANNEL RESISTIVE PULSE SENSORS FOR MICRO-PARTICLE DETECTION AND DIFFERENTIATION". University of Akron / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=akron1196284929.
Texto completoKornilin, Dmitriy V. "Investigation of size, concentration and particle shapes in hydraulic systems using an in-line CMOS image matrix sensor". Thesis, University of Chester, 2018. http://hdl.handle.net/10034/621947.
Texto completoFan, Zihao y Wei Zhao. "Network Coverage Optimization Strategy in Wireless Sensor Networks Based on Particle Swarm Optimization". Thesis, Högskolan i Gävle, Akademin för teknik och miljö, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-9764.
Texto completoBarboza, Kris Leo. "A Diagnostic Technique for Particle Characterization Using Laser Light Extinction". Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/52000.
Texto completoMaster of Science
Kiring, Aroland. "Shrinkage based particle filters for tracking in wireless sensor networks with correlated sparse measurements". Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/20105/.
Texto completoLibros sobre el tema "Particle sensor"
Hartmann, Frank. Evolution of Silicon Sensor Technology in Particle Physics. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64436-3.
Texto completoHartmann, Frank. Evolution of Silicon Sensor Technology in Particle Physics. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-59720-6.
Texto completoGoddard Space Flight Center. Engineering Procurement Office., ed. [Measuring electrically charged particle fluxes in space using a fiber optic loop sensor]: Final report. Greenbelt, MD: NASA Goddard Space Flight Center, Engineering Procurement Office, 1993.
Buscar texto completoA, Lindemulder Elizabeth, Jovaag Kari y United States. National Aeronautics and Space Administration., eds. Temperature-dependent daily variability of precipitable water in special sensor microwave/imager observations. [Washington, DC: National Aeronautics and Space Administration, 1995.
Buscar texto completoA, Lindemulder Elizabeth, Jovaag Kari y United States. National Aeronautics and Space Administration., eds. Temperature-dependent daily variability of precipitable water in special sensor microwave/imager observations. [Washington, DC: National Aeronautics and Space Administration, 1995.
Buscar texto completo1922-, Soo S. L., ed. Instrumentation for fluid-particle flow. Norwich, N.Y: Noyes Publications, 1999.
Buscar texto completo(Firm), Knovel, ed. Instrumentation for fluid-particle flow. Park Ridge, N.J: Noyes Publications, 1999.
Buscar texto completoInc, ebrary, ed. Nanomedicine design of particles, sensors, motors, implants, robots, and devices. Boston, Mass: Artech House, 2009.
Buscar texto completoEvolution of Silicon Sensor Technology in Particle Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/b106762.
Texto completoHartmann, Frank. Evolution of Silicon Sensor Technology in Particle Physics. Springer, 2010.
Buscar texto completoCapítulos de libros sobre el tema "Particle sensor"
Eveland, Christopher K. "Particle Filtering with Evidential Reasoning". En Sensor Based Intelligent Robots, 305–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45993-6_17.
Texto completoJacobsen, Finn y Hans-Elias de Bree. "The Microflown Particle Velocity Sensor". En Handbook of Signal Processing in Acoustics, 1283–91. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-30441-0_68.
Texto completoKreucher, Christopher M., Mark Morelande, Keith Kastella y Alfred O. Hero. "Joint Multi-Target Particle Filtering". En Foundations and Applications of Sensor Management, 59–93. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-49819-5_4.
Texto completoBecker, Aaron, Erik D. Demaine, Sándor P. Fekete, Golnaz Habibi y James McLurkin. "Reconfiguring Massive Particle Swarms with Limited, Global Control". En Algorithms for Sensor Systems, 51–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-45346-5_5.
Texto completoMajumdar, Ivy, B. N. Chatterji y Avijit Kar. "Particle Swarm Optimisation Method for Texture Image Retrieval". En Computational Intelligence in Sensor Networks, 405–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-57277-1_17.
Texto completoRistic, Branko. "Sensor Control for Random Set BasedParticle Filters". En Particle Filters for Random Set Models, 85–119. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6316-0_5.
Texto completoNarkhede, Parag, Shripad Deshpande y Rahee Walambe. "Sensor Data Cleaning Using Particle Swarm Optimization". En Advances in Intelligent Systems and Computing, 182–91. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16681-6_18.
Texto completoZhao, Mengying, Yuqi Ni, Tao Chao y Ke Fang. "An Inertia Weight Variable Particle Swarm Optimization Algorithm with Mutation". En Sensor Networks and Signal Processing, 269–80. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4917-5_21.
Texto completoGning, Amadou, Lyudmila Mihaylova, Fahed Abdallah y Branko Ristic. "Particle Filtering Combined with Interval Methods for Tracking Applications". En Integrated Tracking, Classification, and Sensor Management, 43–74. Hoboken, New Jersey: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118450550.ch02.
Texto completoHamster, A. W., M. J. van Duuren, G. C. S. Brons, J. Flokstra y H. Rogalla. "Squid Readout of Cryogenic Particle Detectors". En Sensor Technology in the Netherlands: State of the Art, 281–85. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5010-1_45.
Texto completoActas de conferencias sobre el tema "Particle sensor"
Coates, M. y G. Ing. "Sensor network particle filters: motes as particles". En 2005 Microwave Electronics: Measurements, Identification, Applications. IEEE, 2005. http://dx.doi.org/10.1109/ssp.2005.1628769.
Texto completoZhou, Gui, Hang Wang y Minjun Peng. "Research on Optimization and Verification Method of Sensor Arrangement in the Chemical and Volume Control System". En 2021 28th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/icone28-65466.
Texto completoJohansen, Per, Michael M. Bech, Sune Dupont, Uffe N. Christiansen, Jens L. Sørensen, David N. Østedgaard-Munck y Anders Bentien. "An Experimental Study on High-Flowrate Ultrasonic Particle Monitoring in Oil Hydraulics". En BATH/ASME 2022 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/fpmc2022-89721.
Texto completoPan, Feng y Adam Huang. "Investigation and Measurement of Electrical Transport of Metal Particle Polymer Composites for the Development of MEMS-Based Corrosion Sensor". En ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12041.
Texto completoKaikkonen, Ville A., Eero O. Molkoselkä, Harri J. Juttula y Anssi J. Mäkynen. "UAV Cloud Particle Sensor". En 2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2024. http://dx.doi.org/10.1109/i2mtc60896.2024.10560651.
Texto completoYunpeng Li, Lingling Zhao y Mark Coates. "Particle flow auxiliary particle filter". En 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). IEEE, 2015. http://dx.doi.org/10.1109/camsap.2015.7383760.
Texto completoPokusevski, Z., I. G. Evans, T. A. York y T. Dyakowski. "A Novel Micro Capacitance Sensor for Studying Hydrodynamics of Particle Laden Flow". En ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2043.
Texto completoNamin, Parham H. y Mohammad A. Tinati. "Node localization using Particle Swarm Optimization". En 2011 Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP). IEEE, 2011. http://dx.doi.org/10.1109/issnip.2011.6146558.
Texto completoChen, Sen, Yitao Shen, Guiyan Qiang, Zheng Zheng, Zheyu Wang, Yin Hao y Ting Hu. "Simulation Study on the Influence of Multi-Magnetic Particles on Oil Sensor Signals". En WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-01-2826.
Texto completoBoiarski, Anthony A. "Fiber Optic Particle Concentration Sensor". En 29th Annual Technical Symposium. SPIE, 1986. http://dx.doi.org/10.1117/12.949775.
Texto completoInformes sobre el tema "Particle sensor"
SEA TECH INC CORVALLIS OR. Development of an Expendable Particle Sensor. Fort Belvoir, VA: Defense Technical Information Center, mayo de 1992. http://dx.doi.org/10.21236/ada251708.
Texto completoBartz, Robert. Development of an Expendable Particle Sensor. Fort Belvoir, VA: Defense Technical Information Center, mayo de 1992. http://dx.doi.org/10.21236/ada251942.
Texto completoBartz, Robert. Development of an Expendable Particle Sensor. Fort Belvoir, VA: Defense Technical Information Center, abril de 1992. http://dx.doi.org/10.21236/ada252185.
Texto completoBartz, Robert. Development of an Expendable Particle Sensor. Fort Belvoir, VA: Defense Technical Information Center, mayo de 1992. http://dx.doi.org/10.21236/ada252186.
Texto completoBartz, Robert. Development of an Expendable Particle Sensor. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1992. http://dx.doi.org/10.21236/ada255702.
Texto completoBartz, Robert. Development of an Expendable Particle Sensor. Fort Belvoir, VA: Defense Technical Information Center, febrero de 1994. http://dx.doi.org/10.21236/ada303901.
Texto completoSiegel, David A., Ivona Cetinic, Andrew F. Thompson, Norman B. Nelson, Michaela Sten, Melissa Omand, Shawnee Traylor et al. EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) North Atlantic sensor calibration and intercalibration documents. NASA STI Program and Woods Hole Oceanographic Institution, octubre de 2023. http://dx.doi.org/10.1575/1912/66998.
Texto completoChang, Enson y R. Patton. Moored optical particle flux sensor (MOPAR). SBIR Phase II interim report. Office of Scientific and Technical Information (OSTI), junio de 1993. http://dx.doi.org/10.2172/10200461.
Texto completoDichter, Bronislaw K., Edward G. Mullen y Gary E. Galica. Space Particle Modeling, Measurements, and Effects: Compact Environmental Anomaly Sensor (CEASE) Proton Calibration. Fort Belvoir, VA: Defense Technical Information Center, febrero de 2011. http://dx.doi.org/10.21236/ada536723.
Texto completoBontha, Jagannadha R., Nancy G. Colton, Eric A. Daymo, T. D. Hylton, C. K. Bayne y T. H. May. Qualification of the Lasentec M600P Particle Size Analyzer and the Red Valve Model 1151 Pressure Sensor. Office of Scientific and Technical Information (OSTI), enero de 2000. http://dx.doi.org/10.2172/15002697.
Texto completo