Literatura académica sobre el tema "Parse data"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Parse data".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Parse data"
Marimon, Montserrat, Núria Bel y Lluís Padró. "Automatic Selection of HPSG-Parsed Sentences for Treebank Construction". Computational Linguistics 40, n.º 3 (septiembre de 2014): 523–31. http://dx.doi.org/10.1162/coli_a_00190.
Texto completoKallmeyer, Laura y Wolfgang Maier. "Data-Driven Parsing using Probabilistic Linear Context-Free Rewriting Systems". Computational Linguistics 39, n.º 1 (marzo de 2013): 87–119. http://dx.doi.org/10.1162/coli_a_00136.
Texto completoDehbi, Y., C. Staat, L. Mandtler y L. Pl¨umer. "INCREMENTAL REFINEMENT OF FAÇADE MODELS WITH ATTRIBUTE GRAMMAR FROM 3D POINT CLOUDS". ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences III-3 (6 de junio de 2016): 311–16. http://dx.doi.org/10.5194/isprsannals-iii-3-311-2016.
Texto completoDehbi, Y., C. Staat, L. Mandtler y L. Pl¨umer. "INCREMENTAL REFINEMENT OF FAÇADE MODELS WITH ATTRIBUTE GRAMMAR FROM 3D POINT CLOUDS". ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences III-3 (6 de junio de 2016): 311–16. http://dx.doi.org/10.5194/isprs-annals-iii-3-311-2016.
Texto completoToutanova, Kristina, Aria Haghighi y Christopher D. Manning. "A Global Joint Model for Semantic Role Labeling". Computational Linguistics 34, n.º 2 (junio de 2008): 161–91. http://dx.doi.org/10.1162/coli.2008.34.2.161.
Texto completoHomayounfar, Hooman y Fangju Wang. "Sibling‐First Data Organization for Parse‐Free XML Data Processing". International Journal of Web Information Systems 2, n.º 3/4 (27 de septiembre de 2007): 176–86. http://dx.doi.org/10.1108/17440080780000298.
Texto completoClark, Stephen y James R. Curran. "Wide-Coverage Efficient Statistical Parsing with CCG and Log-Linear Models". Computational Linguistics 33, n.º 4 (diciembre de 2007): 493–552. http://dx.doi.org/10.1162/coli.2007.33.4.493.
Texto completoAmmar, Waleed, George Mulcaire, Miguel Ballesteros, Chris Dyer y Noah A. Smith. "Many Languages, One Parser". Transactions of the Association for Computational Linguistics 4 (diciembre de 2016): 431–44. http://dx.doi.org/10.1162/tacl_a_00109.
Texto completoRioth, Matthew J., Ramya Thota, David B. Staggs, Douglas B. Johnson y Jeremy L. Warner. "Pragmatic precision oncology: the secondary uses of clinical tumor molecular profiling". Journal of the American Medical Informatics Association 23, n.º 4 (28 de marzo de 2016): 773–76. http://dx.doi.org/10.1093/jamia/ocw002.
Texto completoZou, Feng, Xingshu Chen, Yonggang Luo, Tiemai Huang, Zhihong Liao y Keer Song. "Spray: Streaming Log Parser for Real-Time Analysis". Security and Communication Networks 2022 (6 de septiembre de 2022): 1–11. http://dx.doi.org/10.1155/2022/1559270.
Texto completoTesis sobre el tema "Parse data"
Mansfield, Martin F. "Design of a generic parse tree for imperative languages". Virtual Press, 1992. http://liblink.bsu.edu/uhtbin/catkey/834617.
Texto completoDepartment of Computer Science
Andrén, August y Patrik Hagernäs. "Data-parallel Acceleration of PARSEC Black-Scholes Benchmark". Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-128607.
Texto completoAlvestad, Gaute Odin, Ole Martin Gausnes y Ole-Jakob Kråkenes. "Development of a Demand Driven Dom Parser". Thesis, Norwegian University of Science and Technology, Department of Computer and Information Science, 2006. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9311.
Texto completoXML is a tremendous popular markup language in internet applications as well as a storage format. XML document access is often done through an API, and perhaps the most important of these is the W3C DOM. The recommendation from W3C defines a number of interfaces for a developer to access and manipulate XML documents. The recommendation does not define implementation specific approaches used behind the interfaces. A problem with the W3C DOM approach however, is that documents often are loaded in to memory as a node tree of objects, representing the structure of the XML document. This tree is memory consuming and can take up to 4-10 times the document size. Lazy processing have been proposed, building the node tree as it accesses new parts of the document. But when the whole document has been accessed, the overhead compared to traditional parsers, both in terms of memory usage and performance, is high. In this thesis a new approach is introduced. With the use of well known indexing schemes for XML, basic techniques for reducing memory consumption, and principles for memoryhandling in operation systems, a new and alternative approach is introduced. By using a memory cache repository for DOM nodes and simultaneous utilize principles for lazy processing, the proposed implementation has full control over memory consumption. The proposed prototype is called Demand Driven Dom Parser, D3P. The proposed approach removes least recently used nodes from the memory when the cache has exceeded its memory limit. This makes the D3P able to process the document with low memory requirements. An advantage with this approach is that the parser is able to process documents that exceed the size of the main memory, which is impossible with traditional approaches. The implementation is evaluated and compared with other implementations, both lazy and traditional parsers that builds everything in memory on load. The proposed implementation performs well when the bottleneck is memory usage, because the user can set the desired amount of memory to be used by the XML node tree. On the other hand, as the coverage of the document increases, time spend processing the node tree grows beyond what is used by traditional approaches.
Seppecher, Manon. "Mining call detail records to reconstruct global urban mobility patterns for large scale emissions calculation". Electronic Thesis or Diss., Lyon, 2022. http://www.theses.fr/2022LYSET002.
Texto completoRoad traffic contributes significantly to atmospheric emissions in urban areas, a major issue in the fight against climate change. Therefore, joint monitoring of road traffic and related emissions is essential for urban public decision-making. And beyond this kind of procedure, public authorities need methods for evaluating transport policies according to environmental criteria.Coupling traffic models with traffic-related emission models is a suitable response to this need. However, integrating this solution into decision support tools requires a refined and dynamic char-acterization of urban mobility. Cell phone data, particularly Call Detail Records, are an interesting alternative to traditional data to estimate this mobility. They are rich, massive, and available worldwide. However, their use in literature for systematic traffic characterization has remained limited. It is due to low spatial resolution and temporal sampling rates sensitive to communication behaviors.This Ph.D. thesis investigates the estimation of traffic variables necessary for calculating air emis-sions (total distances traveled and average traffic speeds) from such data, despite their biases. The first significant contribution is to articulate methods of classification of individuals with two distinct approaches of mobility reconstruction. A second contribution is developing a method for estimating traffic speeds based on the fusion of large amounts of travel data. Finally, we present a complete methodological process of modeling and data processing. It relates the methods proposed in this thesis coherently
Shah, Meelap (Meelap Vijay). "PARTE : automatic program partitioning for efficient computation over encrypted data". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/79239.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (p. 45-47).
Many modern applications outsource their data storage and computation needs to third parties. Although this lifts many infrastructure burdens from the application developer, he must deal with an increased risk of data leakage (i.e. there are more distributed copies of the data, the third party may be insecure and/or untrustworthy). Oftentimes, the most practical option is to tolerate this risk. This is far from ideal and in case of highly sensitive data (e.g. medical records, location history) it is unacceptable. We present PARTE, a tool to aid application developers in lowering the risk of data leakage. PARTE statically analyzes a program's source, annotated to indicate types which will hold sensitive data (i.e. data that should not be leaked), and outputs a partitioned version of the source. One partition will operate only on encrypted copies of sensitive data to lower the risk of data leakage and can safely be run by a third party or otherwise untrusted environment. The second partition must have plaintext access to sensitive data and therefore should be run in a trusted environment. Program execution will flow between the partitions, levaraging third party resources when data leakage risk is low. Further, we identify operations which, if efficiently supported by some encryption scheme, would improve the performance of partitioned execution. To demonstrate the feasiblity of these ideas, we implement PARTE in Haskell and run it on a web application, hpaste, which allows users to upload and share text snippets. The partitioned hpaste services web request 1.2 - 2.5 x slower than the original hpaste. We find this overhead to be moderately high. Moreover, the partitioning does not allow much code to run on encrypted data. We discuss why we feel our techniques did not produce an attractive partitioning and offer insight on new research directions which could yield better results.
by Meelap Shah.
S.M.
Bucciarelli, Stefano. "Un compilatore per un linguaggio per smart contract intrinsecamente tipato". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19573/.
Texto completoDall, Rasmus. "Statistical parametric speech synthesis using conversational data and phenomena". Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/29016.
Texto completoErozel, Guzen. "Natural Language Interface On A Video Data Model". Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606251/index.pdf.
Texto completoAbel, Donald Randall. "The Parser Converter Loader: An Implementation of the Computational Chemistry Output Language (CCOL)". PDXScholar, 1995. https://pdxscholar.library.pdx.edu/open_access_etds/4926.
Texto completoSodhi, Bir Apaar Singh. "DATA MINING: TRACKING SUSPICIOUS LOGGING ACTIVITY USING HADOOP". CSUSB ScholarWorks, 2016. https://scholarworks.lib.csusb.edu/etd/271.
Texto completoLibros sobre el tema "Parse data"
Müller-Landmann, Sonja. Corpus-based parse pruning: Applying empirical data to symbolic knowledge. Saarbrücken: DFKI, 2000.
Buscar texto completoBateson, Teresa M. Report on parsing and construction of prototype that will accept freeform text data from publishers' sites and parse this data for automatic entry to book database. [s.l: The Author], 2001.
Buscar texto completoservice), SpringerLink (Online, ed. Crittografia nel Paese delle Meraviglie. Milano: Springer Milan, 2012.
Buscar texto completoMiller, David. Commodore 128 data file programming. Blue Ridge Summit, USA: TAB Books, 1987.
Buscar texto completoReading machines: Toward an algorithmic criticism. Urbana, Ill: University of Illinois Press, 2011.
Buscar texto completoBlum, Caroline y Reisman David. Driven to abstraction: Caroline Blum, Lori Ellison, Dana James, Melanie Parke, Lizzie Scott. New York, NY: New Bohemia Press, 2017.
Buscar texto completoFred, Karlsson, ed. Constraint grammar: A language-independent system for parsing unrestricted text. Berlin: Mouton de Gruyter, 1995.
Buscar texto completoRachel, Cohen y Ackermann Edith, eds. Quand l'ordinateur parle--: Utilisation de la synthèse vocale dans l'apprentissage et le perfectionnement de la langue écrite. Paris: Presses universitaires de France, 1992.
Buscar texto completoPreston Opera House (Ont.), ed. Operetta, John Gilpin to date, and farce, Ici on parle français (French spoken here): Under auspices Y.M.R. & R.R., Preston Opera House, May 7th : Miss Dora Amelin, accompanist, Mr. H.L. Read, director .. [Cambridge, Ont.?: s.n., 1987.
Buscar texto completoCaldelli, Maria Letizia, Mireille Cébeillac-Gervasoni, Nicolas Laubry, Ilaria Manzini, Raffaella Marchesini, Filippo Marini Recchia y Fausto Zevi. Epigrafia ostiense dopo il CIL. Venice: Edizioni Ca' Foscari, 2018. http://dx.doi.org/10.30687/978-88-6969-229-1.
Texto completoCapítulos de libros sobre el tema "Parse data"
Kulkarni, Adithya, Nasim Sabetpour, Alexey Markin, Oliver Eulenstein y Qi Li. "CPTAM: Constituency Parse Tree Aggregation Method". En Proceedings of the 2022 SIAM International Conference on Data Mining (SDM), 630–38. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2022. http://dx.doi.org/10.1137/1.9781611977172.71.
Texto completoMardan, Azat. "Getting Data from Backend Using jQuery and Parse". En Full Stack JavaScript, 67–126. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3718-2_3.
Texto completoPatchala, Jagadeesh, Raj Bhatnagar y Sridharan Gopalakrishnan. "Author Attribution of Email Messages Using Parse-Tree Features". En Machine Learning and Data Mining in Pattern Recognition, 313–27. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21024-7_21.
Texto completoChang, Fei, Li Zhu, Jin Liu, Jin Yuan y Xiaoxia Deng. "A Universal Heterogeneous Data Integration Standard and Parse Algorithm in Real-Time Database". En Lecture Notes in Electrical Engineering, 709–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34522-7_76.
Texto completoJin, Zhijing y Rada Mihalcea. "Natural Language Processing for Policymaking". En Handbook of Computational Social Science for Policy, 141–62. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-16624-2_7.
Texto completoNambiar, Aparna, B. Premjith, J. P. Sanjanasri y K. P. Soman. "BERT-Based Dependency Parser for Hindi". En Advances in Data Science and Computing Technologies, 421–27. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3656-4_43.
Texto completoSkopik, Florian, Markus Wurzenberger y Max Landauer. "A Concept for a Tree-Based Log Parser Generator". En Smart Log Data Analytics, 131–49. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74450-2_7.
Texto completoPapadopoulos, Constantinos V. "On the parallelism of data". En PARLE'94 Parallel Architectures and Languages Europe, 414–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-58184-7_119.
Texto completoHurson, A. R., B. Lee y B. Shirazi. "Hybrid structure: A scheme for handling data structures in a data flow environment". En PARLE '89 Parallel Architectures and Languages Europe, 323–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/3540512845_48.
Texto completoGlück-Hiltrop, Elvira, Matthias Ramlow y Ute Schürfeld. "The sto//mann data flow machine". En PARLE '89 Parallel Architectures and Languages Europe, 433–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/3540512845_55.
Texto completoActas de conferencias sobre el tema "Parse data"
Yoshida, Satoshi y Takuya Kida. "An Efficient Algorithm for Almost Instantaneous VF Code Using Multiplexed Parse Tree". En 2010 Data Compression Conference. IEEE, 2010. http://dx.doi.org/10.1109/dcc.2010.27.
Texto completoHenderson, James y Ivan Titov. "Data-defined kernels for parse reranking derived from probabilistic models". En the 43rd Annual Meeting. Morristown, NJ, USA: Association for Computational Linguistics, 2005. http://dx.doi.org/10.3115/1219840.1219863.
Texto completoDeva Priyaa, B. y M. Indra Devi. "Fragmented query parse tree based SQL injection detection system for web applications". En 2016 International Conference on Computing Technologies and Intelligent Data Engineering (ICCTIDE). IEEE, 2016. http://dx.doi.org/10.1109/icctide.2016.7725367.
Texto completoGoraya, Yassar, Ali Al Felasi, Nicolas Daynac, Stuart Walley, Marc-Antoine Dupont, Hiroyuki Inoue, Ahmed Mubarak Al Khamiri y Alia Hasan Hindi. "Delineating Karsts, Small-Scale Faults, and Fractures by Using a Global Stratigraphic Framework to Integrate Conventional Seismic Attributes with Diffraction Imaging in a Giant Offshore Field, Abu Dhabi." En ADIPEC. SPE, 2022. http://dx.doi.org/10.2118/211628-ms.
Texto completoYu, Jinhui, Xinyu Luan y Yu Sun. "An Automated Analytics Engine for College Program Selection using Machine Learning and Big Data Analysis". En 2nd International Conference on Machine Learning Techniques and NLP (MLNLP 2021). Academy and Industry Research Collaboration Center (AIRCC), 2021. http://dx.doi.org/10.5121/csit.2021.111417.
Texto completoAfzalan, Milad, Farrokh Jazizadeh y Mehdi Ahmadian. "Toward Railway Automated Defect Detection From Onboard Data Using Deep Learning". En 2020 Joint Rail Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/jrc2020-8031.
Texto completoIsmail, Mohamed. "An Excel Add-in for Accreditation Data Collection and Auto Grading Sheets (AGS): A Canadian Experience". En ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88096.
Texto completoSponsler, Jeffrey L. y Charles Parker. "Lab Parser: A Parser for Medical Lab data". En Modelling, Simulation and Identification. Calgary,AB,Canada: ACTAPRESS, 2018. http://dx.doi.org/10.2316/p.2018.858-002.
Texto completoAhmad, Isaar, Sanjog Patil y Smruti R. Sarangi. "HPXA: A highly parallel XML parser". En 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2018. http://dx.doi.org/10.23919/date.2018.8342012.
Texto completoYi, Michael, Pradeepkumar Ashok, Dawson Ramos, Spencer Bohlander, Taylor Thetford, Mojtaba Shahri, Mickey Noworyta, Trey Peroyea y Michael Behounek. "Automated Merging of Time Series and Textual Operations Data to Extract Technical Limiter Re-Design Recommendations". En IADC/SPE International Drilling Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/208745-ms.
Texto completoInformes sobre el tema "Parse data"
Apicella, M. L., J. Slaton y B. Levi. Integrated Information Support System (IISS). Volume 5. Common Data Model Subsystem. Part 13. Neutral Data Manipulation Language (NDML) Precompiler Parse NDML Product Specification. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1990. http://dx.doi.org/10.21236/ada250453.
Texto completoApicella, M. L., J. Slaton y B. Levi. Integrated Information Support System (IISS). Volume 5. Common Data Model Subsystem. Part 12. Neutral Data Manipulation Language (NDML) Precompiler Parse Procedure Division Product Specification. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1990. http://dx.doi.org/10.21236/ada250452.
Texto completoApicella, M. L., J. Slaton y B. Levi. Integrated Information Support System (IISS). Volume 5. Common Data Model Subsystem. Part 11. Neutral Data Manipulation Language (NDML) Precompiler Parse Application Procedure Division Product Specification. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1990. http://dx.doi.org/10.21236/ada252452.
Texto completoTaylor, Shawna, Jake Carlson, Joel Herndon, Alicia Hofelich Mohr, Wendy Kozlowski, Jennifer Moore, Jonathan Petters y Cynthia Hudson Vitale. Public Access Data Management and Sharing Activities for Academic Administration and Researchers. Association of Research Libraries, noviembre de 2022. http://dx.doi.org/10.29242/report.rads2022.
Texto completoChen, Yongzhou, Ammar Tahir y Radhika Mittal. Controlling Congestion via In-Network Content Adaptation. Illinois Center for Transportation, septiembre de 2022. http://dx.doi.org/10.36501/0197-9191/22-018.
Texto completoBotero Bolívar, Sara, Víctor De La Espriella Palmett, José Carlos Sánchez Vega, Juan Felipe Soto Restrepo y Jairo Gándara. Perlas clínicas: Guías de la Sociedad Europea de Cardiología (ESC) 2020 para el manejo del síndrome coronario agudo sin elevación del segmento ST. Parte 1/2. Facultad de Medicina Universidad de Antioquia, junio de 2023. http://dx.doi.org/10.59473/medudea.pc.2023.10.
Texto completoCalijuri, Mónica, Gustavo A. GArcía, Juan José Bravo y José Elías Feres de Almeida. Documentos tributarios electrónicos y big data económica para el control tributario y aduanero: utilización y codificación de los estados financieros electrónicos para control fiscal y datos económico en América Latina y el Caribe: Tomo 3. Banco Interamericano de Desarrollo, julio de 2023. http://dx.doi.org/10.18235/0005000.
Texto completoFulponi, Juan Ignacio y Cristian Moleres. Metodología para el estudio de la movilidad con datos de Facebook: generación de matrices origen-destino en ciudades de América Latina y análisis para Buenos Aires. Banco Interamericano de Desarrollo, diciembre de 2022. http://dx.doi.org/10.18235/0004591.
Texto completoMeneses-González, María Fernanda y Diego Fernando Cuesta-Mora. Informe especial de estabilidad financiera: liquidez de mercado - Primer semestre de 2021. Banco de la República de Colombia, junio de 2021. http://dx.doi.org/10.32468/liqu-mer.sem1-2021.
Texto completoMeneses-González, María Fernanda y Mariana Escobar. Informe especial de estabilidad financiera: liquidez de mercado - Segundo semestre de 2022. Banco de la República Colombia, diciembre de 2022. http://dx.doi.org/10.32468/liqu-mer.sem2-2022.
Texto completo