Literatura académica sobre el tema "Pancreatic cancer stem cell"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Pancreatic cancer stem cell".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Pancreatic cancer stem cell"
Lee, Cheong J., Joseph Dosch y Diane M. Simeone. "Pancreatic Cancer Stem Cells". Journal of Clinical Oncology 26, n.º 17 (10 de junio de 2008): 2806–12. http://dx.doi.org/10.1200/jco.2008.16.6702.
Texto completoNishiyama, T., K. Shimizu, K. Uenoyama, C. Yamasaki y Y. Hori. "Oncogene-mediated mouse pancreatic stem cell shows pancreatic cancer stem cell phenotype". Pancreatology 16, n.º 1 (enero de 2016): S5. http://dx.doi.org/10.1016/j.pan.2015.12.023.
Texto completoGursesCila, Hacer E., Muradiye Acar, Furkan B. Barut, Mehmet Gunduz, Reidar Grenman y Esra Gunduz. "Investigation of the expression of RIF1 gene on head and neck, pancreatic and brain cancer and cancer stem cells". Clinical & Investigative Medicine 39, n.º 6 (1 de diciembre de 2016): 43. http://dx.doi.org/10.25011/cim.v39i6.27500.
Texto completoHamada, Shin, Atsushi Masamune, Tetsuya Takikawa, Noriaki Suzuki, Kazuhiro Kikuta, Morihisa Hirota, Hirofumi Hamada, Masayoshi Kobune, Kennichi Satoh y Tooru Shimosegawa. "Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells". Biochemical and Biophysical Research Communications 421, n.º 2 (mayo de 2012): 349–54. http://dx.doi.org/10.1016/j.bbrc.2012.04.014.
Texto completoHerreros-Villanueva, Marta. "Embryonic stem cell factors and pancreatic cancer". World Journal of Gastroenterology 20, n.º 9 (2014): 2247. http://dx.doi.org/10.3748/wjg.v20.i9.2247.
Texto completoKumar, Rachit, Avani Dholakia y Zeshaan Rasheed. "Stem cell–directed therapies in pancreatic cancer". Current Problems in Cancer 37, n.º 5 (septiembre de 2013): 280–86. http://dx.doi.org/10.1016/j.currproblcancer.2013.10.005.
Texto completoSubramaniam, Dharmalingam, Gaurav Kaushik, Prasad Dandawate y Shrikant Anant. "Targeting Cancer Stem Cells for Chemoprevention of Pancreatic Cancer". Current Medicinal Chemistry 25, n.º 22 (4 de julio de 2018): 2585–94. http://dx.doi.org/10.2174/0929867324666170127095832.
Texto completoSasaki, Naoya, Takamichi Ishii, Ryo Kamimura, Masatoshi Kajiwara, Takafumi Machimoto, Norio Nakatsuji, Hirofumi Suemori, Iwao Ikai, Kentaro Yasuchika y Shinji Uemoto. "Alpha-fetoprotein-producing pancreatic cancer cells possess cancer stem cell characteristics". Cancer Letters 308, n.º 2 (septiembre de 2011): 152–61. http://dx.doi.org/10.1016/j.canlet.2011.04.023.
Texto completoXia, Pu y Da-Hua Liu. "Cancer stem cell markers for liver cancer and pancreatic cancer". Stem Cell Research 60 (abril de 2022): 102701. http://dx.doi.org/10.1016/j.scr.2022.102701.
Texto completoHuang, Ling y Senthil Muthuswamy. "Abstract A068: Investigation of changes in epithelial cell states in pancreatic cancer using human organoids". Cancer Research 82, n.º 22_Supplement (15 de noviembre de 2022): A068. http://dx.doi.org/10.1158/1538-7445.panca22-a068.
Texto completoTesis sobre el tema "Pancreatic cancer stem cell"
Sasaki, Naoya. "Alpha-fetoprotein-producing pancreatic cancer cells possess cancer stem cell characteristics". Kyoto University, 2012. http://hdl.handle.net/2433/157414.
Texto completoZheng, Xuehai. "Role of stem cell protein PIWIL4 in the tumorigenesis of human pancreatic cancer". [Huntington, WV : Marshall University Libraries], 2008. http://www.marshall.edu/etd/descript.asp?ref=.
Texto completoZhao, Yue. "Characterization and targeted therapy of stem cell-like side population cells in pancreatic cancer and esophageal cancer". Diss., Ludwig-Maximilians-Universität München, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-168236.
Texto completoRoshan, Moniri Mani. "Pancreatic ductal-derived mesenchymal stem cells : their distribution, characterization and cytotoxic effect on pancreatic cancer cells". Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/43529.
Texto completoRITELLI, Rossana. "Generating a pancreatic cancer mouse model: from Cancer Stem Cells to in vivo imaging strategies". Doctoral thesis, Università degli Studi di Verona, 2010. http://hdl.handle.net/11562/344615.
Texto completoBackground: Pancreatic cancer remains a highly aggressive and not curable cancer in spite of the ample research in the last decades. Since conventional treatment approaches have not satisfactory effects because they don’t result in a significant improvement of the disease outcome, an effective research system is still strongly needed, in order to accurately predict the clinical efficacy of novel compounds developed for pancreatic cancer treatment. Aim: the aim of the current study is to contribute to the generation of a complete and straightforward system useful for the identification and pre-clinic screening of novel drug for the treatment pancreatic cancer. This system should provide the techniques, the protocols and a pancreatic cancer model suitable firstly for in vitro high-throughput compounds screening and then for in vivo validation of the selected molecules. Results: findings previously obtained in our laboratory have already demonstrate potential stemlike behavior of Panc-1 cells growing as 3-dimensional spheres (Panc1-spheres), isolated from adherent Panc-1 cell line. In this study we continued with the in vivo characterization of Panc-1 spheres because we used them as pancreatic cancer cell line model in the compounds screening system we are generating. So, we performed subcutaneus and orthotopical injections in nude mice with adherent Panc1 and Panc1-spheres cells. Tumor growths were followed using MRI. In order to deepen the characterization of Panc1-spheres, we also studied EMT on tumors derived from this experiment such as in vitro in both cell lines. Moreover, we observed that an improvement of imaging strategies was actually needed, in order to better control above all the formation of small masses as metastasis and early primary tumors, since MRI was not sufficient when used alone. For this reason, we also decided to focus our attention to the most important non-invasive small animalimaging modalities available today, in particular MRI, Micro-Ultrasound (US) and In Vivo Optical Imaging. Then, we correlated these techniques, arriving to the point to have an “imaging protocol”, able to offset some of the limitation of each modality when used alone, to be used in the compounds screening system we would like to generate. Conclusion: Our findings have demonstrated that the pancreatic cancer spheres are more than just cancer stem-like cells. Our mouse model, established with Sphere-growing cells, may be used for the testing of novel compounds specifically designed to target this stem-like compartment, resistant to standard chemotherapies. A combined imaging approach, with combine MRI, Optical imaging and US, in this contest become extremely important, in order to follow primary tumor sizes and metastasis detection before and after the treatment with novel compounds.
Zhao, Yue [Verfasser] y Peter [Akademischer Betreuer] Nelson. "Characterization and targeted therapy of stem cell-like side population cells in pancreatic cancer and esophageal cancer / Yue Zhao. Betreuer: Peter Nelson". München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2013. http://d-nb.info/1049393317/34.
Texto completoMaruno, Takahisa. "Visualization of stem cell activity in pancreatic cancer expansion by direct lineage tracing with live imaging". Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/265166.
Texto completo新制・論文博士
博士(医学)
乙第13427号
論医博第2231号
新制||医||1053(附属図書館)
京都大学大学院医学研究科医学専攻
(主査)教授 松田 道行, 教授 渡邊 直樹, 教授 川口 義弥
学位規則第4条第2項該当
Doctor of Medical Science
Kyoto University
DFAM
Karim, Karzan Khowaraham. "Investigating the effects of curcumin and resveratrol on pancreatic cancer stem cells". Thesis, University of Leicester, 2015. http://hdl.handle.net/2381/33155.
Texto completoCREMONESE, Giorgia. "Prostate Stem Cell Antigen (PSCA): a putative target for immunotherapy and diagnosis in prostate, pancreatic and bladder carcinoma". Doctoral thesis, Università degli Studi di Verona, 2010. http://hdl.handle.net/11562/342880.
Texto completoAntibody-based therapy using unconjugated, toxin-conjugated or radiolabeled immunoglobulins recognizing tumor-associated antigens has proven beneficial for solid and hematolymphoid neoplasms. A suitable target could be prostate stem cell antigen (PSCA), a member of the “GPI-anchored protein”. PSCA is a cell surface-antigen expressed at low levels in normal prostate tissue and over expressed in prostate, pancreatic and bladder carcinomas. Moreover PSCA expression is positively correlated with Gleason score and with pathologic stage in prostate cancer. The present thesis describes the generation and characterization of the murine anti PSCA monoclonal antibody (mAb), obtained by hybridoma technology, and its fragment single chain (scFv), generated by cloning the variable heavy (VH) and light (VL) chain sequences in the expression vector pHEN-2. The mAb showed the ability to recognize with good affinity and specificity the native PSCA by flow cytometry. The diagnostic potential of the mAb was demonstrated by Western Blot performed with prostate and pancreatic neoplastic tissue lysates, showing the binding to denaturated and glycosylated PSCA, and by ELISA performed with fixed cells. The mAb was also assessed for its possible use in the therapeutic approach: the cell-proliferation assay demonstrated that the antibody alone is not able to induce cell death through a direct mechanism, while when it is conjugated to the ricin A chain toxin (RTA) by chemical linkage it can poison PC-3 hPSCA cells with an IC50 (i.e. concentration inhibiting 50% of the maximal cell proliferation) of 1.3x10-9 M, value 100 fold lower than the IC50 of the RTA toxin alone. The scFv was produced in E. Coli bacteria; flow cytometric analysis on PSCA-positive cells and immunoenzymatic assay on the recombinant antigen proved that the antibody fragment maintains the binding specificity of the parental monoclonal antibody. The affinity of the scFv is lower than the affinity of mAb but it is partially recovered making the scFv divalent by cross-linking the scFv monomers via an antibody-mediated myc- Tag interaction. To create a fusion immunotoxin (IT) the scFv was later genetically fused to the enzymatic domain of Pseudomonas aeruginosa exotoxin A (PE40). The resulting IT was expressed in E. Coli bacteria and it is accumulated in the inclusion bodies. The flow cytometric analysis on PSCA-positive cells performed with the whole refolded inclusion bodies extract containing the fusion IT confirmed that the interaction of scFv with the PSCA is preserved after fusion to PE40. The efficacy of purified scFv-PE40 will be analyse in vitro on positive and negative cell lines and subsequently in vivo models which also will be useful to study the side effects of this new drug.
Capodanno, Ylenia. "Identifying therapeutic implications of cancer stem cells in human and canine insulinoma". Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31175.
Texto completoLibros sobre el tema "Pancreatic cancer stem cell"
service), SpringerLink (Online, ed. Pancreatic Stem Cells. Totowa, NJ: Humana Press, 2009.
Buscar texto completoShah, Khalid, ed. Stem Cell Therapeutics for Cancer. Hoboken, NJ: John Wiley & Sons, Inc, 2013. http://dx.doi.org/10.1002/9781118660423.
Texto completoPeter, Gale Robert, Juttner Christopher y Henon P. R, eds. Blood stem cell transplants. Cambridge, [U.K.]: Cambridge University Press, 1994.
Buscar texto completoPavlovic, Mirjana y Bela Balint. Bioengineering and Cancer Stem Cell Concept. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25670-2.
Texto completoScatena, Roberto, Alvaro Mordente y Bruno Giardina, eds. Advances in Cancer Stem Cell Biology. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-0809-3.
Texto completoScatena, Roberto, Alvaro Mordente y B. Giardina. Advances in cancer stem cell biology. New York: Springer, 2012.
Buscar texto completoLópez-Larrea, Carlos. Stem Cell Transplantation. New York, NY: Springer US, 2012.
Buscar texto completoN, Winter Jane, ed. Blood stem cell transplantation. Boston: Kluwer Academic Publishers, 1997.
Buscar texto completoMaccalli, Cristina, Matilde Todaro y Soldano Ferrone, eds. Cancer Stem Cell Resistance to Targeted Therapy. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16624-3.
Texto completoRegad, Tarik, Thomas J. Sayers y Robert C. Rees, eds. Principles of Stem Cell Biology and Cancer. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118670613.
Texto completoCapítulos de libros sobre el tema "Pancreatic cancer stem cell"
Proctor, Erica N. y Diane M. Simeone. "Pancreatic Cancer Stem Cells". En Advances in Cancer Stem Cell Biology, 197–209. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0809-3_12.
Texto completoLi, Chenwei y Diane M. Simeone. "Pancreatic Cancer Stem Cells". En Pancreatic Cancer, 317–31. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-0-387-77498-5_12.
Texto completoGoodwin, Mackenzie, Ethan V. Abel, Vinee Purohit y Diane M. Simeone. "Pancreatic Cancer Stem Cells". En Pancreatic Cancer, 349–68. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7193-0_12.
Texto completoGoodwin, Mackenzie, Ethan V. Abel, Vinee Purohit y Diane M. Simeone. "Pancreatic Cancer Stem Cells". En Pancreatic Cancer, 1–20. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6631-8_12-2.
Texto completoAlvina, Fidelia B., Arvin M. Gouw y Anne Le. "Cancer Stem Cell Metabolism". En The Heterogeneity of Cancer Metabolism, 161–72. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65768-0_12.
Texto completoHendley, Audrey M. y Jennifer M. Bailey. "Stem Cells and Pancreatic Cancer". En Principles of Stem Cell Biology and Cancer, 213–29. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118670613.ch11.
Texto completoDosch, Joseph, Cheong Jun Lee y Diane M. Simeone. "Cancer Stem Cells: Pancreatic Cancer". En Stem Cells and Cancer, 185–97. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-933-8_15.
Texto completoGarcía-Silva, Susana y Christopher Heeschen. "Stem Cells and Pancreatic Cancer". En Cancer Stem Cells, 209–22. Hoboken, NJ: John Wiley & Sons, 2014. http://dx.doi.org/10.1002/9781118356203.ch16.
Texto completoSimeone, Diane M. "Pancreatic Cancer Stem Cells". En Encyclopedia of Cancer, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27841-9_4359-4.
Texto completoSimeone, Diane M. "Pancreatic Cancer Stem Cells". En Encyclopedia of Cancer, 3417–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-46875-3_4359.
Texto completoActas de conferencias sobre el tema "Pancreatic cancer stem cell"
Takano, Shigetsugu, Maximilian Reichert, Hideyuki Yoshitomi, Basil Bakir, Koushik K. Das, Steffen Heeg, Shingo Kagawa et al. "Abstract B30: Prrx1 isoforms regulate pancreatic cancer stem cell functions during pancreatic cancer progression". En Abstracts: AACR Special Conference on Pancreatic Cancer: Advances in Science and Clinical Care; May 12-15, 2016; Orlando, FL. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.panca16-b30.
Texto completoMatsuda, Yoko, Kazuya Yamahatsu, Kiyoko Kawahara, Taeko Suzuki, Takenori Fujii, Tetsushi Yamamoto, Murray Korc, Zenya Naito y Toshiyuki Ishiwata. "Abstract 2457: Nestin regulates pancreatic cancer stem cell functions". En Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-2457.
Texto completoMatsuda, Yoko, Masahito Hagio, Yuji Yanagisawa, Taeko Suzuki, Yoko Kawamoto, Kiyoko Kawahara, Zenya Naito y Toshiyuki Ishiwata. "Abstract 5200: Nestin regulates stem cell functions of pancreatic cancer cells". En Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-5200.
Texto completoIlmer, Matthias, Jody Vykoukal y Eckhard Alt. "Abstract 3355: Signaling networks in pancreatic cancer cells with stem cell characteristics". En Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-3355.
Texto completoKim, Sun A., Soo Bin Park y Si Young Song. "Abstract 713: GLRX3, a secretory biomarker of pancreatic cancer based on pancreatic cancer stem cell characteristics". En Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-713.
Texto completoBreunig, M., J. Merkle, T. Seufferlein, M. Hohwieler y A. Kleger. "Designer pancreatic cancer generated from human pluripotent stem cell derived ducts". En Viszeralmedizin 2019. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1695427.
Texto completoAbel, Ethan V., Masashi Goto, Nikita Ramanathan, Chandan Kumar, Lesa Begley, Michele L. Dziubinski, Lidong Wang, Meghna Waghray, Sumithra Urs y Diane M. Simeone. "Abstract 2335: Pancreatic cancer stem cell function is regulated by HNF1A". En Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-2335.
Texto completoAbel, Ethan V., Masashi Goto, Michele L. Dziubinski, Chandan Kumar, Nikita Ramanathan y Diane M. Simeone. "Abstract A65: Pancreatic cancer stem cell function is regulated by HNF1A". En Abstracts: AACR Special Conference on Pancreatic Cancer: Innovations in Research and Treatment; May 18-21, 2014; New Orleans, LA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.panca2014-a65.
Texto completoVisús, Carmen, Antonio Lozano-Leon, YangYang Wang, YooJung Chang, David C. Whitcomb, Randall E. Brand y Albert B. DeLeo. "Abstract 3339: Elimination of cancer stem cells in pancreatic cancer cell lines by a combinatorial therapy". En Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-3339.
Texto completoBegum, Asma, Ross McMillan, Yu-tai Chang, Vesselin Penchev, NV Rajeshkumar, Anirban Maitra, Michael G. Goggins et al. "Abstract 5889: Cancer associated fibroblasts regulate cancer stem cell functions in pancreatic ductal adenocarcinoma". En Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-5889.
Texto completoInformes sobre el tema "Pancreatic cancer stem cell"
Houchen, Courtney W. Tuft Cell Regulation of miRNAs in Pancreatic Cancer. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2013. http://dx.doi.org/10.21236/ada602496.
Texto completoHouchen, Courtney W. Tuft Cell Regulation of miRNAs in Pancreatic Cancer. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 2014. http://dx.doi.org/10.21236/ada621275.
Texto completoFletterick, Robert J. Inhibition of Pancreatic Cancer Cell Proliferation by LRH-1 Inhibitors. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2013. http://dx.doi.org/10.21236/ada599687.
Texto completoWatabe, Kounosuke. DCIS-Specific MicroRNA in Cancer Stem Cell. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2011. http://dx.doi.org/10.21236/ada554452.
Texto completoKarp, Jeffrey y John Isaacs. Mesenchymal Stem Cell-Based Therapy for Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2014. http://dx.doi.org/10.21236/ada612823.
Texto completoWatabe, Kounosuke. Identification of Dormant Stem Cell in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2012. http://dx.doi.org/10.21236/ada559377.
Texto completoEngler, Adam J., Jing Yang, Spencer Wei, Laurent Fattet y Matthew Ondeck. Regulation of Breast Cancer Stem Cell by Tissue Rigidity. Fort Belvoir, VA: Defense Technical Information Center, junio de 2014. http://dx.doi.org/10.21236/ada609393.
Texto completoPonnazhagan, Selvarangan. Regenerative Stem Cell Therapy for Breast Cancer Bone Metastasis. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2014. http://dx.doi.org/10.21236/ada612699.
Texto completoPonnazhagan, Selvarangan. Regenerative Stem Cell Therapy for Breast Cancer Bone Metastasis. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2012. http://dx.doi.org/10.21236/ada567277.
Texto completoPonnazhagan, Selvarangan. Regenerative Stem Cell Therapy for Breast Cancer Bone Metastasis. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2013. http://dx.doi.org/10.21236/ada592352.
Texto completo