Literatura académica sobre el tema "Palladium-catalyzed substitutive coupling"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Palladium-catalyzed substitutive coupling".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Palladium-catalyzed substitutive coupling"
Collet, Jurriën W., Thomas R. Roose, Bram Weijers, Bert U. W. Maes, Eelco Ruijter y Romano V. A. Orru. "Recent Advances in Palladium-Catalyzed Isocyanide Insertions". Molecules 25, n.º 21 (23 de octubre de 2020): 4906. http://dx.doi.org/10.3390/molecules25214906.
Texto completoYuasa, Akihiro, Kazunori Nagao y Hirohisa Ohmiya. "Allylic cross-coupling using aromatic aldehydes as α-alkoxyalkyl anions". Beilstein Journal of Organic Chemistry 16 (7 de febrero de 2020): 185–89. http://dx.doi.org/10.3762/bjoc.16.21.
Texto completoCampbell, Katie, Robert McDonald y Rik R. Tykwinski. "Porphyrinic assemblies of pyridine-containing macrocycles". Journal of Porphyrins and Phthalocyanines 09, n.º 11 (noviembre de 2005): 794–802. http://dx.doi.org/10.1142/s1088424605000903.
Texto completoCrawford, Sarah M., Craig A. Wheaton, Vinayak Mishra y Mark Stradiotto. "Probing the effect of donor-fragment substitution in Mor-DalPhos on palladium-catalyzed C–N and C–C cross-coupling reactivity". Canadian Journal of Chemistry 96, n.º 6 (junio de 2018): 578–86. http://dx.doi.org/10.1139/cjc-2017-0749.
Texto completoButenschön, Holger. "Haloferrocenes: Syntheses and Selected Reactions". Synthesis 50, n.º 19 (22 de agosto de 2018): 3787–808. http://dx.doi.org/10.1055/s-0037-1610210.
Texto completoBlessley, George, Patrick Holden, Matthew Walker, John M. Brown y Véronique Gouverneur. "Palladium-Catalyzed Substitution and Cross-Coupling of Benzylic Fluorides". Organic Letters 14, n.º 11 (18 de mayo de 2012): 2754–57. http://dx.doi.org/10.1021/ol300977f.
Texto completoLe Bras, Jean y Jacques Muzart. "Carbonylated Indoles from PdII-Catalyzed Intermolecular Reactions of Indolyl Cores". Synthesis 51, n.º 15 (2 de mayo de 2019): 2871–90. http://dx.doi.org/10.1055/s-0037-1611478.
Texto completoMathias, Fanny, Youssef Kabri, Maxime Crozet y Patrice Vanelle. "Efficient Access to Original 6-Substituted 5-Nitro-2,3-dihydroimidazo[2,1-b]oxazoles". Synthesis 49, n.º 12 (4 de abril de 2017): 2775–85. http://dx.doi.org/10.1055/s-0036-1588984.
Texto completoBlessley, George, Patrick Holden, Matthew Walker, John M. Brown y Veronique Gouverneur. "ChemInform Abstract: Palladium-Catalyzed Substitution and Cross-Coupling of Benzylic Fluorides." ChemInform 43, n.º 40 (7 de septiembre de 2012): no. http://dx.doi.org/10.1002/chin.201240025.
Texto completoKranke, Birgit y Horst Kunz. "Stereoselective synthesis of chiral piperidine derivatives employing arabinopyranosylamine as the carbohydrate auxiliary". Canadian Journal of Chemistry 84, n.º 4 (1 de abril de 2006): 625–41. http://dx.doi.org/10.1139/v06-060.
Texto completoTesis sobre el tema "Palladium-catalyzed substitutive coupling"
Panza, Florian. "Fοnctiοnnalisatiοn directe οrthοgοnale métallο-catalysée des sites carbοne-hydrοgène des platefοrmes pharmacοlοgiques à cοeur imidazοisοindοle". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMIR11.
Texto completoFor several decades, chemists constantly seek to push the limits of synthetic strategies by developing ever more efficient and more economical methodologies. In this context, transition metal-catalyzed direct functionalization of C—H bonds is one of the most powerful tools for constructing and funtionalizing simple molecules and ever more complex moieties, with a great diversity of C—H bonds. These strategies also answer the needs for the opening of the chemical space of functionalization. Imidazoisoindole, tricyclic heterocycle composed of an imidazole core, is a very interesting scaffold for biological activity and presents C—H bonds with very diverse properties, but late-functionalization methodology of these structures has yet to be listed in the literature. This work takes place in this context and presents, (I) based on past laboratory experience, a robust methodology to synthetize diversely substituted imidazoisoindoles at high scale by palladium-catalyzed intramolecular C—H activation ; (II) an extension of standard directC2—H functionalization of 1,3-diazole moieties applied to imidazo[5,1-a]isoindoles with a palladium(0)-copper(I) cooperative catalysis ; (III) a new methodology of direct C(sp³)—H palladium-catalyzed mono-functionalization at benzylic position of imidazo[2,1-a]isoindoles ; (IV) a preliminary study of the observed regioselectivity of iridium-catalyzed direct C(sp²)—H borylation of imidazo[2,1-a]isoindoles
Hagelin, Helena. "Palladium-catalyzed aromatic coupling and allylic substitution : an experimental and theoretical study /". Stockholm, 1999. http://www.lib.kth.se/abs99/hage0528.pdf.
Texto completoDehbi, Oussama. "Synthèse de nouveaux dérivés pyridopyrimidiniques, imidazopyridiniques et imidazopyridaziniques : évaluation de leurs propriétés biologiques". Thesis, Orléans, 2012. http://www.theses.fr/2012ORLE2078/document.
Texto completoProducts belonging to the pyridopyrimidine family are characterized by their intense use in pharmacology. The increase of interest for this heterocyclic scaffold prompted different research teams around the world to study their chemically and biologically properties. In this work, we are interested in the functionalization of pyridopyrimidines and, more specifically, of the less described regioisomer, namely pyrido[3,2-d]pyrimidines. The target compounds were synthesized from 2,7-dichloropyrido[3,2-d]pyrimidine via nucleophilic aromatic substitution and palladium-catalyzed couplings and, in order to obtain potent kinases inhibitors. Our goal has been achieved with several elaborate molecules. These bioactive compounds inhibit kinases such as Cyclin Dependant Kinases (CDK), Glycogen Synthase 3 (GSK3) or Dual specificity tYRosine-phosphorylation-regulated Kinase 1A (DYRK1A) in the nanomolar range. These biological targets are mainly involved in degenerative process or down syndrome. These pharmacological results led us to extend our studies to other pyridopyrimidines, namely pyrido[2,3-d]pyrimidines as well as other types of polynitrogenated bicycles, namely imidazo[1,2- a]pyridine and imidazo[1,2-b]pyridazine
Capítulos de libros sobre el tema "Palladium-catalyzed substitutive coupling"
Sloane, S. E., K. T. Behlow, M. D. Mills y J. R. Clark. "46.5.7 Three-Component Coupling Reactions that Generate 1,3-Dienes". En Knowledge Updates 2022/2. Stuttgart: Georg Thieme Verlag KG, 2022. http://dx.doi.org/10.1055/sos-sd-146-00001.
Texto completo"Synthetic Methods for Diaryl Ether Preparation Using Arylating Reagents". En Methodologies in Ether Synthesis, 78–126. Royal Society of Chemistry, 2024. http://dx.doi.org/10.1039/9781837675166-00078.
Texto completo