Literatura académica sobre el tema "(p,q)-Laplacian"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "(p,q)-Laplacian".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "(p,q)-Laplacian"
Hsu, Tsing-San y Huei-Li Lin. "Multiplicity of Positive Solutions for ap-q-Laplacian Type Equation with Critical Nonlinearities". Abstract and Applied Analysis 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/829069.
Texto completoMotreanu, Dumitru. "Quasilinear Dirichlet problems with competing operators and convection". Open Mathematics 18, n.º 1 (1 de enero de 2020): 1510–17. http://dx.doi.org/10.1515/math-2020-0112.
Texto completoMotreanu, Dumitru. "Quasilinear Dirichlet problems with competing operators and convection". Open Mathematics 18, n.º 1 (22 de diciembre de 2020): 1510–17. http://dx.doi.org/10.1515/math-2020-0112.
Texto completoAbolarinwa, Abimbola y Shahroud Azami. "Comparison estimates on the first eigenvalue of a quasilinear elliptic system". Journal of Applied Analysis 26, n.º 2 (1 de diciembre de 2020): 273–85. http://dx.doi.org/10.1515/jaa-2020-2024.
Texto completoGasiński, Leszek y Nikolaos S. Papageorgiou. "Resonant Anisotropic (p,q)-Equations". Mathematics 8, n.º 8 (10 de agosto de 2020): 1332. http://dx.doi.org/10.3390/math8081332.
Texto completo李, 燕茹. "On a Class of (p(u),q(u))-Laplacian Problem". Pure Mathematics 11, n.º 04 (2021): 586–98. http://dx.doi.org/10.12677/pm.2021.114072.
Texto completoPapageorgiou, Nikolaos S., Dongdong Qin y Vicenţiu D. Rădulescu. "Nonlinear eigenvalue problems for the (p,q)–Laplacian". Bulletin des Sciences Mathématiques 172 (noviembre de 2021): 103039. http://dx.doi.org/10.1016/j.bulsci.2021.103039.
Texto completoHaghaiegh, Somayeh y Ghasem Afrouzi. "Sub-super solutions for (p-q) Laplacian systems". Boundary Value Problems 2011, n.º 1 (2011): 52. http://dx.doi.org/10.1186/1687-2770-2011-52.
Texto completoManouni, Said El, Kanishka Perera y Ratnasingham Shivaji. "On singular quasi-monotone (p, q)-Laplacian systems". Proceedings of the Royal Society of Edinburgh: Section A Mathematics 142, n.º 3 (junio de 2012): 585–94. http://dx.doi.org/10.1017/s0308210510001356.
Texto completoHumphries, Peter. "Spectral Multiplicity for Maaß Newforms of Non-Squarefree Level". International Mathematics Research Notices 2019, n.º 18 (8 de diciembre de 2017): 5703–43. http://dx.doi.org/10.1093/imrn/rnx283.
Texto completoTesis sobre el tema "(p,q)-Laplacian"
SILVA, José de Brito. "O método das sub e supersoluções para um sistema do tipo (p,q)-Laplaciano". Universidade Federal de Campina Grande, 2013. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1388.
Texto completoMade available in DSpace on 2018-08-08T20:06:07Z (GMT). No. of bitstreams: 1 JOSÉ DE BRITO SILVA - DISSERTAÇÃO PPGMAT 2013..pdf: 535262 bytes, checksum: eb7f0d4f7e69b8a4b86d3e1dc0f16739 (MD5) Previous issue date: 2013-10
Capes
Neste trabalho discutiremos a existência de soluções fracas positivas para um sistema do (p, q)-Laplaciano com mudança de sinal nas funções de peso, com domínio limitado e fronteira suave. Para garantir a existência de soluções fracas positivas primeiramente asseguraremos a solução positiva de um problema calásico que é o problema de autovalor do p-laplaciano, e do problema "linear"do p-laplaciano com condição zero de Dirichlet. Feito isto usaremos a existência destas soluções para assegurar que o problema em questão admite solução fraca positiva, via o método das sub-super-soluções
In this work we discuss the existence of weak positive solutions for a system (p, q)- Laplacian with change of sign in the weight functions with bounded domain and smooth boundary. To ensure the existence of weak positive solutions first will ensure a positive solution to a classic problem that is the problem eigenvalue p-Laplacian value, and the "linear"problem with zero condition p-Laplacian Dirichelt. Having done this we use the existence of these solutions to ensure that the problem in question admits a weak positive solution via the method of sub-super-solutions.
Baldelli, Laura. "Existence and multiplicity results for nonlinear elliptic problems". Doctoral thesis, 2022. http://hdl.handle.net/2158/1261959.
Texto completoCapítulos de libros sobre el tema "(p,q)-Laplacian"
Motreanu, Dumitru y Viorica Venera Motreanu. "(p, q)–Laplacian Equations with Convection Term and an Intrinsic Operator". En Differential and Integral Inequalities, 589–601. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27407-8_22.
Texto completoAzroul, Elhoussine y Athmane Boumazourh. "A Sub-supersolutions Method for a Class of Weighted (p(.), q(.))-Laplacian Systems". En Recent Advances in Modeling, Analysis and Systems Control: Theoretical Aspects and Applications, 21–35. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26149-8_3.
Texto completoJiang, Congying y Chengmin Hou. "The Existence of Multiple Positive Solutions of a Riemann-Liouville Fractional q-Difference Equation Under Four-Point Boundary Value Condition with p-Laplacian Operator". En Advances in Transdisciplinary Engineering. IOS Press, 2022. http://dx.doi.org/10.3233/atde220008.
Texto completoActas de conferencias sobre el tema "(p,q)-Laplacian"
Rasouli, S. H. y G. A. Afrouzi. "On the nonexistence and uniqueness of positive weak solutions for nonlinear multiparameter elliptic systems involving the (p, q)‐Laplacian". En ICMS INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE. American Institute of Physics, 2010. http://dx.doi.org/10.1063/1.3525205.
Texto completo