Artículos de revistas sobre el tema "P-finite element method"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: P-finite element method.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "P-finite element method".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

HAN, WEIMIN. "The P-version Penalty Finite Element Method". IMA Journal of Numerical Analysis 12, n.º 1 (1992): 47–56. http://dx.doi.org/10.1093/imanum/12.1.47.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Liu, Y. y H. R. Busby. "p-version hybrid/mixed finite element method". Finite Elements in Analysis and Design 30, n.º 4 (octubre de 1998): 325–33. http://dx.doi.org/10.1016/s0168-874x(98)00042-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Field, David A. y Yoram Pressburger. "Anh-p- multigrid method for finite element analysis". International Journal for Numerical Methods in Engineering 36, n.º 6 (30 de marzo de 1993): 893–908. http://dx.doi.org/10.1002/nme.1620360602.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Selvam, R. Panneer y Zu-Qing Qu. "Adaptive p-finite element method for wind engineering". Wind and Structures 5, n.º 2_3_4 (25 de abril de 2002): 301–16. http://dx.doi.org/10.12989/was.2002.5.2_3_4.301.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Cao, Weiming y Benqi Guo. "Preconditioning on Element Interfaces for the p-Version Finite Element Method and Spectral Element Method". SIAM Journal on Scientific Computing 21, n.º 2 (enero de 1999): 522–51. http://dx.doi.org/10.1137/s1064827596306951.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Guo, Benqi y Weiming Cao. "Inexact solvers on element interfaces for the p and h-p finite element method". Computer Methods in Applied Mechanics and Engineering 150, n.º 1-4 (diciembre de 1997): 173–89. http://dx.doi.org/10.1016/s0045-7825(97)00095-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Akin, J. E. y M. Singh. "Object-oriented Fortran 90 P-adaptive finite element method". Advances in Engineering Software 33, n.º 7-10 (julio de 2002): 461–68. http://dx.doi.org/10.1016/s0965-9978(02)00048-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Guo, B. y I. Babuška. "The h-p version of the finite element method". Computational Mechanics 1, n.º 1 (marzo de 1986): 21–41. http://dx.doi.org/10.1007/bf00298636.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Guo, B. y I. Babuška. "The h-p version of the finite element method". Computational Mechanics 1, n.º 3 (septiembre de 1986): 203–20. http://dx.doi.org/10.1007/bf00272624.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Guo, Benqi y Weiming Cao. "Domain decomposition method for the h-p version finite element method". Computer Methods in Applied Mechanics and Engineering 157, n.º 3-4 (mayo de 1998): 425–40. http://dx.doi.org/10.1016/s0045-7825(97)00249-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Babuška, I. y H. C. Elman. "Performance of theh-p version of the finite element method with various elements". International Journal for Numerical Methods in Engineering 36, n.º 15 (15 de agosto de 1993): 2503–23. http://dx.doi.org/10.1002/nme.1620361502.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Pavarino, Luca F. "Schwarz methods with local refinement for the p-version finite element method". Numerische Mathematik 69, n.º 2 (diciembre de 1994): 185–211. http://dx.doi.org/10.1007/s002110050087.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Zolotareva, N. D. y E. S. Nikolaev. "Stagnation in the p-version of the finite element method". Moscow University Computational Mathematics and Cybernetics 38, n.º 3 (julio de 2014): 91–99. http://dx.doi.org/10.3103/s0278641914030108.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Farhloul, Mohamed y Hassan Manouzi. "On a mixed finite element method for the p-Laplacian". Rocky Mountain Journal of Mathematics 8, n.º 1 (abril de 2000): 67–78. http://dx.doi.org/10.1216/camq/1008957338.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Korneev, Vadim G. y Søren Jensen. "Preconditioning of the p-version of the finite element method". Computer Methods in Applied Mechanics and Engineering 150, n.º 1-4 (diciembre de 1997): 215–38. http://dx.doi.org/10.1016/s0045-7825(97)00090-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Fish, J. y R. Guttal. "The p-version of finite element method for shell analysis". Computational Mechanics 16, n.º 5 (agosto de 1995): 328–40. http://dx.doi.org/10.1007/bf00350722.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Fish, J. y R. Guttal. "The p -version of finite element method for shell analysis". Computational Mechanics 16, n.º 5 (1 de agosto de 1995): 328–40. http://dx.doi.org/10.1007/s004660050077.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Liu, D. J. y Z. R. Chen. "The adaptive finite element method for the P-Laplace problem". Applied Numerical Mathematics 152 (junio de 2020): 323–37. http://dx.doi.org/10.1016/j.apnum.2019.11.018.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Suhuan, Chen, Liang Ping y Han Wanzhi. "M-P inverse topological variation method of finite element structures". Applied Mathematics and Mechanics 19, n.º 3 (marzo de 1998): 289–301. http://dx.doi.org/10.1007/bf02453393.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Zhang, Xiu Ye &. Shangyou. "A Weak Galerkin Finite Element Method for $p$-Laplacian Problem". East Asian Journal on Applied Mathematics 11, n.º 2 (junio de 2021): 219–33. http://dx.doi.org/10.4208/eajam.020920.251220.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Surana, Karan S., Celso H. Carranza y Sri Sai Charan Mathi. "k-Version of Finite Element Method for BVPs and IVPs". Mathematics 9, n.º 12 (9 de junio de 2021): 1333. http://dx.doi.org/10.3390/math9121333.

Texto completo
Resumen
The paper presents k-version of the finite element method for boundary value problems (BVPs) and initial value problems (IVPs) in which global differentiability of approximations is always the result of the union of local approximations. The higher order global differentiability approximations (HGDA/DG) are always p-version hierarchical that permit use of any desired p-level without effecting global differentiability. HGDA/DG are true Ci, Cij, Cijk, hence the dofs at the nonhierarchical nodes of the elements are transformable between natural and physical coordinate spaces using calculus. This is not the case with tensor product higher order continuity elements discussed in this paper, thus confirming that the tensor product approximations are not true Ci, Cijk, Cijk approximations. It is shown that isogeometric analysis for a domain with more than one patch can only yield solutions of class C0. This method has no concept of finite elements and local approximations, just patches. It is shown that compariso of this method with k-version of the finite element method is meaningless. Model problem studies in R2 establish accuracy and superior convergence characteristics of true Cijp-version hierarchical local approximations presented in this paper over tensor product approximations. Convergence characteristics of p-convergence, k-convergence and pk-convergence are illustrated for self adjoint, non-self adjoint and non-linear differential operators in BVPs. It is demonstrated that h, p and k are three independent parameters in all finite element computations. Tensor product local approximations and other published works on k-version and their limitations are discussed in the paper and are compared with present work.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Gui, W. y I. Babuška. "Theh,p andh-p versions of the finite element method in 1 dimension". Numerische Mathematik 49, n.º 6 (noviembre de 1986): 577–612. http://dx.doi.org/10.1007/bf01389733.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Gui, W. y I. Babuška. "Theh, p andh-p versions of the finite element method in 1 dimension". Numerische Mathematik 49, n.º 6 (noviembre de 1986): 613–57. http://dx.doi.org/10.1007/bf01389734.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Gui, W. y I. Babuška. "Theh, p andh-p versions of the finite element method in 1 dimension". Numerische Mathematik 49, n.º 6 (noviembre de 1986): 659–83. http://dx.doi.org/10.1007/bf01389735.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Babuška, Ivo y Manil Suri. "The p- and h-p versions of the finite element method, an overview". Computer Methods in Applied Mechanics and Engineering 80, n.º 1-3 (junio de 1990): 5–26. http://dx.doi.org/10.1016/0045-7825(90)90011-a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Nguyen, Tam H., Chau H. Le y Jerome F. Hajjar. "Topology optimization using the p-version of the finite element method". Structural and Multidisciplinary Optimization 56, n.º 3 (16 de marzo de 2017): 571–86. http://dx.doi.org/10.1007/s00158-017-1675-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Thompson, Lony L. y Peter M. Pinsky. "Complex wavenumber Fourier analysis of the p-version finite element method". Computational Mechanics 13, n.º 4 (julio de 1994): 255–75. http://dx.doi.org/10.1007/bf00350228.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Tin-Loi, F. y N. S. Ngo. "Performance of the p-version finite element method for limit analysis". International Journal of Mechanical Sciences 45, n.º 6-7 (junio de 2003): 1149–66. http://dx.doi.org/10.1016/j.ijmecsci.2003.08.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Tin-Loi, F. y N. S. Ngo. "Performance of a p-adaptive finite element method for shakedown analysis". International Journal of Mechanical Sciences 49, n.º 10 (octubre de 2007): 1166–78. http://dx.doi.org/10.1016/j.ijmecsci.2007.02.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

A. Szabó, Barna. "Mesh design for the p-version of the finite element method". Computer Methods in Applied Mechanics and Engineering 55, n.º 1-2 (abril de 1986): 181–97. http://dx.doi.org/10.1016/0045-7825(86)90091-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Mandel, Jan. "Iterative solvers by substructuring for the p-version finite element method". Computer Methods in Applied Mechanics and Engineering 80, n.º 1-3 (junio de 1990): 117–28. http://dx.doi.org/10.1016/0045-7825(90)90017-g.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Kuo, Yong-Lin, William L. Cleghorn y Kamran Behdinan. "HAMILTONIAN AS ERROR INDICATOR IN THE P-VERSION OF FINITE ELEMENT METHOD". Transactions of the Canadian Society for Mechanical Engineering 34, n.º 2 (junio de 2010): 215–23. http://dx.doi.org/10.1139/tcsme-2010-0013.

Texto completo
Resumen
This paper presents the Hamiltonian-based error analysis applied to two-dimensional elasostatic problems. The accuracy enhancement is achieved by using the p-version of finite element method. The results show that the Hamiltonian error has faster rates of convergence at lower order of interpolation polynomials to compare with the energy error, and the Hamiltonian error clearly indicates great error reductions at a certain polynomial order. This can not only obtain an accurate enough solution but also save extra computational time. Another strategy is presented by computing the residual of the Hamiltonian-based governing equations. Relative values of residuals between elements can provide an index of selecting the best polynomial orders. Illustrative examples show the validities of the two approaches.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

BABUŠKA, IVO, UDAY BANERJEE y JOHN E. OSBORN. "GENERALIZED FINITE ELEMENT METHODS — MAIN IDEAS, RESULTS AND PERSPECTIVE". International Journal of Computational Methods 01, n.º 01 (junio de 2004): 67–103. http://dx.doi.org/10.1142/s0219876204000083.

Texto completo
Resumen
This paper is an overview of the main ideas of the Generalized Finite Element Method (GFEM). We present the basic results, experiences with, and potentials of this method. GFEM is a generalization of the classical Finite Element Method — in its h, p, and h-p versions — as well as of the various forms of meshless methods used in engineering.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Huang, Yong, De Jun Ma, W. Chen, Jia Liang Wang y Liang Sun. "Finite Element Simulation and Experimental Analysis of O-P Hardness". Advanced Materials Research 1033-1034 (octubre de 2014): 462–65. http://dx.doi.org/10.4028/www.scientific.net/amr.1033-1034.462.

Texto completo
Resumen
Based on the finite element analysis method to simulate the O-P hardness. Taking S45C steel as an example, comparative analysis of O-P hardness of finite element simulation and O-P hardness of instrument indentation hardness experiment, results show that difference of S45C steel’s O-P hardness between the finite element simulation and real experiment is-2.62% Accordingly seen, O-P hardness can be obtained by finite element numerical simulation method, it’s a possible way to study relations between O-P hardness and Vickers hardness based on finite element numerical simulation techniques.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Shi, Yu, Hong Ling Meng, Qian Jia y Dong Yang Shi. "Superconvergence Analysis of Finite Element Method for Onlinear Klein-Gordon Equation". Applied Mechanics and Materials 527 (febrero de 2014): 343–46. http://dx.doi.org/10.4028/www.scientific.net/amm.527.343.

Texto completo
Resumen
The standard finite elements of degree p over the rectangular meshes are applied to a non-linear Klein-Gordon equation. By utilizing the properties of interpolation on the element, high accuracy analysis and derivative delivery techniques with respect to time t instead of the traditional Ritz projection operator, which is an indispensable tool in the traditional finite element analysis, the supercloseproperty with order is obtained. Furthermore, the superconvergence result is derived through the postprocessing approach.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Szabó, Barna A. "The p- and h-p versions of the finite element method in solid mechanics". Computer Methods in Applied Mechanics and Engineering 80, n.º 1-3 (junio de 1990): 185–95. http://dx.doi.org/10.1016/0045-7825(90)90022-e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Wang, Jie Fang y Wei Guang An. "P-SS Algorithm for Solving the Eigenvalue Problem of Finite Element System". Applied Mechanics and Materials 300-301 (febrero de 2013): 1118–21. http://dx.doi.org/10.4028/www.scientific.net/amm.300-301.1118.

Texto completo
Resumen
P-SS algorithm for solving eigenvalue problem was obtained, based on the power method and the similar shrinkage method. This algorithm can be used to not only solve all eigenvalues of small system, but also partial eigenvalues of large finite element system. The calculation program of this algorithm is universal and practical. Compared with the existing methods, the error of P-SS method is very small, and it signify that the new method is feasible and convenient.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Strug, Barbara, Anna Paszynśka, Maciej Paszynśki y Ewa Grabska. "Using a graph grammar system in the finite element method". International Journal of Applied Mathematics and Computer Science 23, n.º 4 (1 de diciembre de 2013): 839–53. http://dx.doi.org/10.2478/amcs-2013-0063.

Texto completo
Resumen
Abstract The paper presents a system of Composite Graph Grammars (CGGs)modelling adaptive two dimensional hp Finite Element Method (hp-FEM) algorithms with rectangular finite elements. A computational mesh is represented by a composite graph. The operations performed over the mesh are defined by the graph grammar rules. The CGG system contains different graph grammars defining different kinds of rules of mesh transformations. These grammars allow one to generate the initial mesh, assign values to element nodes and perform h- and p-adaptations. The CGG system is illustrated with an example from the domain of geophysics.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Ilyas, Muhammad y Bishnu P. Lamichhane. "Optimal parameter for the stabilised five-field extended Hu–Washizu formulation". ANZIAM Journal 61 (11 de agosto de 2020): C197—C213. http://dx.doi.org/10.21914/anziamj.v61i0.15176.

Texto completo
Resumen
We present a mixed finite element method for the elasticity problem. We expand the standard Hu–Washizu formulation to include a pressure unknown and its Lagrange multiplier. By doing so, we derive a five-field formulation. We apply a biorthogonal system that leads to an efficient numerical formulation. We address the coercivity problem by adding a stabilisation term with a parameter. We also present an analysis of the optimal choices of parameter approximation. References I. Babuska and T. Strouboulis. The finite element method and its reliability. Oxford University Press, New York, 2001. https://global.oup.com/academic/product/the-finite-element-method-and-its-reliability-9780198502760?cc=au&lang=en&. D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press, Cambridge, UK, 3rd edition edition, 2007. doi:10.1017/CBO9780511618635. J. K. Djoko and B. D. Reddy. An extended Hu–Washizu formulation for elasticity. Comput. Meth. Appl. Mech.Eng. 195(44):6330–6346, 2006. doi:10.1016/j.cma.2005.12.013. J. Droniou, M. Ilyas, B. P. Lamichhane, and G. E. Wheeler. A mixed finite element method for a sixth-order elliptic problem. IMA J. Numer. Anal. 39(1):374–397, 2017. doi:10.1093/imanum/drx066. M. Ilyas. Finite element methods and multi-field applications. PhD thesis, University of Newcastle, 2019. http://hdl.handle.net/1959.13/1403421. M. Ilyas and B. P. Lamichhane. A stabilised mixed finite element method for the Poisson problem based on a three-field formulation. In Proceedings of the 12th Biennial Engineering Mathematics and Applications Conference, EMAC-2015, volume 57 of ANZIAM J. pages C177–C192, 2016. doi:10.21914/anziamj.v57i0.10356. M. Ilyas and B. P. Lamichhane. A three-field formulation of the Poisson problem with Nitsche approach. In Proceedings of the 13th Biennial Engineering Mathematics and Applications Conference, EMAC-2017, volume 59 of ANZIAM J. pages C128–C142, 2018. doi:10.21914/anziamj.v59i0.12645. B. P. Lamichhane. Two simple finite element methods for Reissner–Mindlin plates with clamped boundary condition. Appl. Numer. Math. 72:91–98, 2013. doi:10.1016/j.apnum.2013.04.005. B. P. Lamichhane and E. P. Stephan. A symmetric mixed finite element method for nearly incompressible elasticity based on biorthogonal systems. Numer. Meth. Part. Diff. Eq. 28(4):1336–1353, 2011. doi:10.1002/num.20683. B. P. Lamichhane, A. T. McBride, and B. D. Reddy. A finite element method for a three-field formulation of linear elasticity based on biorthogonal systems. Comput. Meth. Appl. Mech. Eng. 258:109–117, 2013. doi:10.1016/j.cma.2013.02.008. J. C. Simo and F. Armero. Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int. J. Numer. Meth. Eng. 33(7):1413–1449, may 1992. doi:10.1002/nme.1620330705. A. Zdunek, W. Rachowicz, and T. Eriksson. A five-field finite element formulation for nearly inextensible and nearly incompressible finite hyperelasticity. Comput. Math. Appl. 72(1):25–47, 2016. doi:10.1016/j.camwa.2016.04.022.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Zhang, Jian Ming y Yong He. "New Development of the P and H-P Version Finite Element Method with Quasi-Uniform Meshes for Elliptic Problems". Applied Mechanics and Materials 444-445 (octubre de 2013): 671–75. http://dx.doi.org/10.4028/www.scientific.net/amm.444-445.671.

Texto completo
Resumen
In recent three decades, the finite element method (FEM) has rapidly developed as an important numerical method and used widely to solve large-scale scientific and engineering problems. In the fields of structural mechanics such as civil engineering , automobile industry and aerospace industry, the finite element method has successfully solved many engineering practical problems, and it has penetrated almost every field of today's sciences and engineering, such as material science, electricmagnetic fields, fluid dynamics, biology, etc. In this paper, we will overview and summarize the development of the p and h-p version finite element method, and introduce some recent new development and our newest research results of the p and h-p version finite element method with quasi-uniform meshes in three dimensions for elliptic problems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Suri, Manil. "The p and hp finite element method for problems on thin domains". Journal of Computational and Applied Mathematics 128, n.º 1-2 (marzo de 2001): 235–60. http://dx.doi.org/10.1016/s0377-0427(00)00514-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Belenki, L., L. Diening y C. Kreuzer. "Optimality of an adaptive finite element method for the p-Laplacian equation". IMA Journal of Numerical Analysis 32, n.º 2 (16 de julio de 2011): 484–510. http://dx.doi.org/10.1093/imanum/drr016.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Királyfalvi, György y Barna A. Szabó. "Quasi-regional mapping for the p-version of the finite element method". Finite Elements in Analysis and Design 27, n.º 1 (septiembre de 1997): 85–97. http://dx.doi.org/10.1016/s0168-874x(97)00006-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Babuška, I. y Manil Suri. "The $h-p$ version of the finite element method with quasiuniform meshes". ESAIM: Mathematical Modelling and Numerical Analysis 21, n.º 2 (1987): 199–238. http://dx.doi.org/10.1051/m2an/1987210201991.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Eriksson, Kenneth. "Some Error Estimates for the p-Version of the Finite Element Method". SIAM Journal on Numerical Analysis 23, n.º 2 (abril de 1986): 403–11. http://dx.doi.org/10.1137/0723027.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Wang, Y., P. Monk y B. Szabo. "Computing cavity modes using the p-version of the finite element method". IEEE Transactions on Magnetics 32, n.º 3 (mayo de 1996): 1934–40. http://dx.doi.org/10.1109/20.492889.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Babuška, I. y Manil Suri. "The $p$-version of the finite element method for constraint boundary conditions". Mathematics of Computation 51, n.º 183 (1 de septiembre de 1988): 1. http://dx.doi.org/10.1090/s0025-5718-1988-0942140-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Babuska, I. y Manil Suri. "The p-Version of the Finite Element Method for Constraint Boundary Conditions". Mathematics of Computation 51, n.º 183 (julio de 1988): 1. http://dx.doi.org/10.2307/2008576.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Guo, Benqi y Hae-Soo Oh. "Theh-p version of the finite element method for problems with interfaces". International Journal for Numerical Methods in Engineering 37, n.º 10 (30 de mayo de 1994): 1741–62. http://dx.doi.org/10.1002/nme.1620371007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Babuška, I. y Hae-Soo Oh. "Pollution problem of thep- andh-p versions of the finite element method". Communications in Applied Numerical Methods 3, n.º 6 (noviembre de 1987): 553–61. http://dx.doi.org/10.1002/cnm.1630030617.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía