Índice
Literatura académica sobre el tema "Oxydes lamellaires type O3"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Oxydes lamellaires type O3".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Tesis sobre el tema "Oxydes lamellaires type O3"
Wang, Qing. "High Energy Density Layered Oxide Cathodes for Sodium Ion Batteries". Electronic Thesis or Diss., Sorbonne université, 2021. https://theses.hal.science/tel-03728228.
Texto completoThe increasing demand for energy storage has stimulated extensive research for cheaper and more sustainable battery chemistries, such as Na-ion. One of the major challenges of the practical application of Na-ion batteries is the insufficient performances of cathode materials, especially in terms of energy density. O3-type sodium layered oxides are promising in terms of energy density, but they suffer from insufficient cyclability and poor moisture stability. In this context, this thesis focuses on the synthesis and characterization of advanced O3-type cathodes made from cheap constitutions which could overcome these limits. First, the Na(Cu,Fe,Mn)O2 system comprising high-voltage redox centers such as Fe and Cu is systematically studied, exhibiting unsatisfactory cyclability which is revealed to originate from structural and unusual redox processes at high voltages. Next, the Cu and Ti co-substitution in NaNi0.5Mn0.5O2 system is investigated, showing improved cyclability and moisture stability. The optimal compositions are competitive for utility as demonstrated by a 18 650 prototype. Lastly, the possibility of using oxygen as redox center for high capacity is also examined by the example of a first achieved O3-NaLi1/3Mn2/3O2 phase, which is also used as a model compound to deepen our understanding of the fundamental anionic redox mechanism
Rolland, Alice. "Synthèses et caractérisations de précurseurs de catalyseurs de type métaux supportés : Les hydroxydes doubles lamellaires : appliqués à la semi-hydrogénation de l'adiponitrile". Montpellier 2, 2002. http://www.theses.fr/2002MON20028.
Texto completoCarlier-Larregaray, Dany. "Contribution à la caractérisation de matériaux d'électrode positive O3-LiNi0.30Co0.70O2 et O2-LiCoO2 : RMN et calculs ab initio". Phd thesis, Université Sciences et Technologies - Bordeaux I, 2001. http://tel.archives-ouvertes.fr/tel-00010224.
Texto completoLampin, Philippe. "Préparation, étude structurale en relation avec la transition de phase des oxydes ferroélectriques de type pérovskite : Pb(Sc1/2Ta1/2)O3,Pb(Sc1/2Nb1/2)O3 et leur solution solide". Aix-Marseille 3, 1994. http://www.theses.fr/1994AIX30012.
Texto completoDarmograi, Ganna. "Etude thermodynamique et structurale des mécanismes de rétention compétitive des colorants azoïques et d'anions inorganiques à l'interface solide-liquide sur des matériaux modèles de type oxydes, lamellaires et échangeurs organiques". Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS015/document.
Texto completoThe co-occurrence of various pollutants in industrial effluents is one of the most difficult problems the researchers have to face in the field of Environmental Remediation. In this context, the main objective of the present Ph.D. thesis has been to improve the comprehension of the sorption mechanisms involved in the competitive retention of selected organic dyes and inorganic species at the Solid-Liquid interface by using some model sorbents.The manuscript reports the results of advanced sorption studies made by combining several experimental techniques, mainly including kinetic and equilibrium adsorption measurements, XRD diffraction, as well as isothermal titration calorimetry. Three Azo dyes differing in the molecular size, electric charge, and hydrophobic/hydrophilic character, i.e., Methyl Orange (MO), Orange II (OII), and Orange G (OG), were selected for the purpose of this work. Two types of solid materials possessing positively charged surface sites were considered as model sorbents: layered double hydroxide structures based on Mg and Al (molar Mg:Al ratio of 2) with either nitrate (Mg-Al-LDH-NO3) or chloride counter-ions (Mg-Al-LDH-Cl) localized in the interlayer space, on the one hand, and strongly basic anion-exchange resin, Amberlite® IRN-78, on the other hand. The impact of carbonate(IV), sulfate(VI), chromate(VI), and hydrogen phosphate(V) oxyanions on the retention capacity of model sorbents towards the three dyes was also investigated thoroughly.In the first step, the single-component adsorption onto three sorbents was analyzed in regards with the detailed mechanism of retention. In all cases, an ion-exchange pathway between the pristine compensating anions (NO3-, Cl-, OH-) or anions coming from the ambient atmosphere (e.g., carbonates) and the oncoming anionic species was identified as the principal retention mechanism. In the case of LDH sorbents, this anion exchange was accompanied by the intercalation of the adsorbing species within the interlayer space with the concomitant changes in the layered structure, as inferred from the XRD study of the LDH samples loaded with the appropriate solute species. The retention of monovalent MO anions, both from the single-solute and bi-solute solutions, was found to exceed the anionic exchange capacity (AEC) of the LDH samples, which was ascribed to the dye adsorption on the external surface paralleled by the co-adsorption of sodium cations. The adsorption capacity was demonstrated to depend strongly on the hydrophilic-hydrophilic character of the dye units and their capacity of generating lateral interactions (e.g., pi-stacking) with other adsorbed species within the LDH structure. The use of isothermal calorimetry allowed the unusual shape of the curve representing the cumulative enthalpy of displacement to be attributed to the formation of OII aggregates/fibers induced by the presence of Mg and Al cations originating from the partial dissolution of the LDH sample. Competitive adsorption of dye and selected inorganic anions on the three model sorbents was studied in the second step in view of increasing the efficiency of dyes removal by optimizing experimental conditions. One of the main achievements was to categorize the dye uptake schemes in the presence of inorganic anions in regards with the shape of the experimental adsorption isotherms and to correlate them with the individual adsorbate affinities for the LDH sample, as inferred from the calorimetry measurements of the cumulative enthalpy of displacement in single-solute systems. The discussion on the mechanisms of dye retention in the single- and multi-component systems was supplemented by experimental studies of such applicative aspects of sorption phenomena as kinetics, reversibility, and selectivity.Keywords: Layered double hydroxides, anion-exchange resin, Methyl Orange, Orange II, Orange G, Cr(VI), inorganic anions, single-solute and multi-solute adsorption, XRD study, isotherm titration calorimetry
Bains, Jessica. "Optimisation de matériaux lamellaires d'électrode positive pour batteries lithium-ion de type Li1+x(Ni1/2-yMn1/2-yCo2y)1-xO2 via une modification de surface ou une substitution cationique". Phd thesis, Université Sciences et Technologies - Bordeaux I, 2009. http://tel.archives-ouvertes.fr/tel-00575622.
Texto completoBains, Jessica Johanna. "Optimisation de matériaux lamellaires d’électrode positive pour batteries lithium-ion de type Li1+x(Ni1/2-yMn1/2-yCo2y)1-xO2 via une modification de surface ou une substitution cationique". Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13771/document.
Texto completoTwo approaches were considered for the optimization of Li1+x(Ni1/2-yMn1/2-yCo2y)1-xO2 positive electrode materials for lithium-ion batteries : the surface modification (coating) and partial substitution. First, we showed that fluorine substitution for oxygen is not effective, on the contrary to the hypotheses proposed in literature by others authors: in fact a thin LiF layer is formed at the surface of these materials irrespective of the synthesis route. These "coated" materials show a better cyclability. Their structural and physicochemical properties were characterized mainly by X-ray diffraction, 7Li and 19F MAS NMR spectroscopy and Auger electron spectroscopy. Secondly, we studied the effect of aluminum (electrochemically inert) substitution for cobalt within these layered materials rich in nickel and manganese. The synthesis conditions were optimized and an interesting material was thus proposed. The structure and cationic distribution were determined by chemical analyses, X-ray diffraction, magnetic measurements: aluminum substitution leads to a lower overlithiation, to a larger exchange Li+ / Ni2+ ratio and thus to a decreasing bidimensional character for the structure. These materials show a good cyclability even at high rates and an improved thermal stability in the deintercalated state
Capítulos de libros sobre el tema "Oxydes lamellaires type O3"
RUDOLA, Ashish, Fazlil COOWAR, Richard HEAP y Jerry BARKER. "Conception, performance et commercialisation de la technologie des batteries non aqueuses Na-ion de Faradion". En Les batteries Na-ion, 349–82. ISTE Group, 2021. http://dx.doi.org/10.51926/iste.9013.ch8.
Texto completo