Literatura académica sobre el tema "Oscillating Flow"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Oscillating Flow".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Oscillating Flow"
Blevins, R. D. "Application of the Discrete Vortex Method to Fluid-Structure Interaction". Journal of Pressure Vessel Technology 113, n.º 3 (1 de agosto de 1991): 437–45. http://dx.doi.org/10.1115/1.2928779.
Texto completoFabrikant, A. L. "Harbour oscillations generated by shear flow". Journal of Fluid Mechanics 282 (10 de enero de 1995): 203–17. http://dx.doi.org/10.1017/s0022112095000103.
Texto completoAlassar, R. S. y H. M. Badr. "OSCILLATING VISCOUS FLOW OVER PROLATE SPHEROIDS". Transactions of the Canadian Society for Mechanical Engineering 23, n.º 1A (marzo de 1999): 83–93. http://dx.doi.org/10.1139/tcsme-1999-0006.
Texto completoBauer, Ronald J. y C. H. von Kerczek. "Stability of Liquid Film Flow Down an Oscillating Wall". Journal of Applied Mechanics 58, n.º 1 (1 de marzo de 1991): 278–82. http://dx.doi.org/10.1115/1.2897164.
Texto completoYeung, R. W. y M. Vaidhyanathan. "Flow Past Oscillating Cylinders". Journal of Offshore Mechanics and Arctic Engineering 115, n.º 4 (1 de noviembre de 1993): 197–205. http://dx.doi.org/10.1115/1.2920112.
Texto completoTozzi, J. T. y C. H. von Kerczek. "The Stability of Oscillatory Hagen-Poiseuille Flow". Journal of Applied Mechanics 53, n.º 1 (1 de marzo de 1986): 187–92. http://dx.doi.org/10.1115/1.3171709.
Texto completoChen, C. K., L. Wang, J. T. Yang y L. T. Chen. "Experimental and Computational Analysis of Periodic Flow Structure in Oscillatory Gas Flow Meters". Journal of Mechanics 22, n.º 2 (junio de 2006): 137–44. http://dx.doi.org/10.1017/s1727719100004433.
Texto completoLoewenberg, Michael. "Axisymmetric unsteady stokes flow past an oscillating finite-length cylinder". Journal of Fluid Mechanics 265 (25 de abril de 1994): 265–88. http://dx.doi.org/10.1017/s0022112094000832.
Texto completoHicks, Peter D. y Pierre Ricco. "Laminar streak growth above a spanwise oscillating wall". Journal of Fluid Mechanics 768 (6 de marzo de 2015): 348–74. http://dx.doi.org/10.1017/jfm.2015.98.
Texto completoHuang, Yangyang, Monika Nitsche y Eva Kanso. "Hovering in oscillatory flows". Journal of Fluid Mechanics 804 (9 de septiembre de 2016): 531–49. http://dx.doi.org/10.1017/jfm.2016.535.
Texto completoTesis sobre el tema "Oscillating Flow"
Osgood, David B. "Oscillating flow about perforated cylinders". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2000. http://handle.dtic.mil/100.2/ADA381845.
Texto completoThesis advisor(s): Sarpkaya, T. Sarpkaya. "September 2000." Includes bibliographical references (p. 17). Also available in print.
Hayder, Mir Mohammad Abu 1976. "Cross-flow past oscillating circular cylinders". Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=115685.
Texto completoExperimental results showed that, for a reasonably large angle of incidence, the flow in the wake of a stationary cylinder pair could be characterized by two distinct periodicities, each of which was dominant on one side of the wake. Furthermore, for lower Reynolds numbers (Re < 1.0x10 4), there was an integral relationship between the two Strouhal numbers, but this integral relationship was no longer maintained for Re > 1.0x10 4. On the other hand, the flow around stationary cylinders for a small angle of incidence was characterized by a single Strouhal number, which remained approximately constant over the entire Reynolds number range.
For all the cylinder configurations investigated the wake flow patterns remained essentially the same as those of the corresponding static cases, when either of the two cylinders was forced to oscillate with a nondimensional forcing frequency less than approximately 0.10. However, beyond this value, the wake underwent considerable modification vis-a-vis when the cylinders were stationary, and the flow pattern within the wake was strongly dependent on the value of the forcing frequency. In particular, there were distinct regions of synchronization between the dominant wake periodicities and the cylinder oscillation; these synchronization regions involved sub- and superharmonics as well as fundamental synchronizations. With either upstream or downstream cylinder oscillation, the wake on the mean-flow side of the downstream cylinder synchronized with the shear layers separated from its outer surface, whereas synchronizations on the mean-flow side of the upstream cylinder were caused by the periodicities formed from the interaction of the other three shear layers.
The flow phenomena associated with the synchronizations were described in detail via flow visualization. The organization of the wake was strongly dependent on whether it was the upstream or downstream cylinder which was oscillating. The synchronized wake on the mean-flow side of the downstream cylinder at both lower and higher oscillation frequencies for upstream cylinder oscillation was observed to form either by the shedding of independent vortices or by the coalescence of two or more vortices. However, for downstream cylinder oscillation, although the synchronizations on this side of the wake at lower oscillation frequencies were caused by the shedding of independent vortices or by the coalescence of vortices, those at higher oscillation frequencies were the consequence of the coalescence of vortices only. For large incidence angles, the number of shear layers separated from the downstream cylinder which interacted with those separated from the upstream cylinder was critical in causing the synchronizations on the mean-flow side of the upstream cylinder.
In most cases, the flow for all the cylinder configurations traversed between the same patterns as those obtained when the cylinders were placed stationary at their minimum and maximum transverse spacings; but there were also some situations where the oscillation of either cylinder pushed the flow outside the regimes associated with the stationary configurations. The synchronization ranges obtained when the upstream or downstream cylinder was oscillating were different from each other, and these ranges were much wider than the corresponding synchronization ranges for a single oscillating cylinder. For two cylinders, an analysis of the fundamental synchronization showed that the frequency range over which this occurred was much broader for upstream cylinder oscillation than for downstream cylinder oscillation. Also, the fundamental synchronization ranges for downstream cylinder oscillation were closer to those for single cylinder oscillation in comparison to those for upstream cylinder oscillation.
Alexandris, Georgios. "Supersonic flow past two oscillating airfoils". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1998. http://handle.dtic.mil/100.2/ADA350226.
Texto completo"June 1998." Thesis advisor(s): Max F. Platzer, James H. Luscombe, S. Weber. Includes bibliographical references (p. 71-72). Also available online.
Yan, Baoshe. "Fluid flow induced by oscillating bodies and flows in cyclones". Thesis, University of Leeds, 1991. http://etheses.whiterose.ac.uk/435/.
Texto completoGordon, David R. "Computational unsteady flow dynamics : oscillating flow about a circular cylinder". Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/28053.
Texto completoPachalla, Seshadri Rajagopal. "Analysis of oscillating flow cooled SMA actuator". Texas A&M University, 2004. http://hdl.handle.net/1969.1/2669.
Texto completoJayaprakash, Arvind Prakash. "Cavitating Flow over Stationary and Oscillating Hydrofoils". Cincinnati, Ohio : University of Cincinnati, 2008. http://www.ohiolink.edu/etd/view.cgi?acc%5Fnum=ucin1205164937.
Texto completoCommittee/Advisors: Urmila Ghia PhD (Committee Chair), Kirti Ghia PhD (Committee Co-Chair), Milind Jog PhD (Committee Member). Title from electronic thesis title page (viewed Sep.3, 2008). Includes abstract. Keywords: Cavitation; Stationary; Oscillating; Hydrofoils. Includes bibliographical references.
Yang, Hui. "3D unsteady flow in oscillating compressor cascade". Thesis, Durham University, 2004. http://etheses.dur.ac.uk/2835/.
Texto completoSemler, Cogan S. "Experimental investigation of an oscillating flow generator". Thesis, Monterey, California : Naval Postgraduate School, 2010. http://edocs.nps.edu/npspubs/scholarly/theses/2010/Mar/10Mar%5FSemler.pdf.
Texto completoThesis Advisor(s): Platzer, Max. Second Reader: Hobson, Garth. "March 2010." Description based on title screen as viewed on April 23, 2010. Author(s) subject terms: Oscillating Wing, Tidal Power Production, Flutter, Renewable Energy, Flat Plate Lift Generation. Includes bibliographical references (p. 45). Also available in print.
JAYAPRAKASH, ARVIND PRAKASH. "Cavitating Flow over Stationary and Oscillating Hydrofoils". University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1205164937.
Texto completoLibros sobre el tema "Oscillating Flow"
Alexandris, Georgios. Supersonic flow past two oscillating airfoils. Monterey, Calif: Naval Postgraduate School, 1998.
Buscar texto completoGordon, David R. Computational unsteady flow dynamics: Oscillating flow about a circular cylinder. Monterey, Calif: Naval Postgraduate School, 1991.
Buscar texto completoBeyers, M. E. Flow-field interference produced by an asymmetrical support strut. Ottawa, Ont: National Research Council Canada, Institute for Aerospace Research, 1993.
Buscar texto completoLotshaw, John E. Numerical analysis of oscillating flow about a circular cylinder. Monterey, Calif: Naval Postgraduate School, 1992.
Buscar texto completoBrydges, Bruce E. Flow visualization of dynamic stall on an oscillating airfoil. Monterey, Calif: Naval Postgraduate School, 1989.
Buscar texto completoCoward, Adrian V. Stability of oscillatory two phase Couette flow. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1993.
Buscar texto completoKozel, Karel. Numerical simulation of two-dimensional transonic flow over thin oscillating airfoil. Praha, Czechoslovakia: Information Centre for Aeronautics, 1986.
Buscar texto completoSchippers, H. TULIPS: a method to calculate transonic potential flow about oscillating airfoils. Amsterdam, Netherlands: National Aerospace Laboratory, 1988.
Buscar texto completoSrinivasan, G. R. Evaluation of turbulence models for unsteady flows of an oscillating airfoil. [New York]: Pergamon, 1995.
Buscar texto completoDadman, R. Flow around normal and yawed cylinders oscillating over a plane bed. Manchester: UMIST, 1996.
Buscar texto completoCapítulos de libros sobre el tema "Oscillating Flow"
Bullard, E. C. y D. Gubbins. "Oscillating Disk Dynamo and Geomagnetism". En Flow and Fracture of Rocks, 325–28. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm016p0325.
Texto completoMa, Hongbin. "Oscillating Flow and Heat Transfer of Single Phase in Capillary Tubes". En Oscillating Heat Pipes, 87–140. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2504-9_3.
Texto completoMatsuo, Kazuyasu y Heuy-Dong Kim. "Measurement of Oscillating Shock Wave in Supersonic Nozzles". En Flow Visualization VI, 612–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84824-7_108.
Texto completoGo, Jeung Sang, Bo Sung Shin y Jong Soo Ko. "Self-Oscillating Microcantilever Piezoresistive Flow Sensor". En Experimental Mechanics in Nano and Biotechnology, 1347–50. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-415-4.1347.
Texto completoLuo, S. C. "Flow Visualization Study of Flow Past an Oscillating Square Cylinder". En Flow Visualization VI, 388–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84824-7_68.
Texto completoHuff, Dennis L. "Unsteady Flow Field Predictions for Oscillating Cascades". En Unsteady Aerodynamics, Aeroacoustics, and Aeroelasticity of Turbomachines and Propellers, 127–47. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-9341-2_7.
Texto completoHelvensteijn, B. P. M., A. Kashani, A. L. Spivak, P. R. Roach, J. M. Lee y P. Kittel. "Pressure Drop over Regenerators in Oscillating Flow". En Advances in Cryogenic Engineering, 1619–26. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-9047-4_203.
Texto completoMaleki, Maniya, Héctor Pacheco, Carlos Ruiz Suárez y Eric Clément. "Interfacial Instability of a Confined Suspension Under Oscillating Shear". En Traffic and Granular Flow ’07, 621–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-77074-9_68.
Texto completovan Buren, Simon y Wolfgang Polifke. "Heat Transfer in Pulsating Flow and Its Impact on Temperature Distribution and Damping Performance of Acoustic Resonators". En Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 97–111. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_6.
Texto completoAso, S., A. Sakamoto y M. Hayashi. "Numerical Flow Visualization of Separated Flows Around Oscillating Airfoil by Solving Incompressible Navier-Stokes Equations". En Flow Visualization VI, 757–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84824-7_135.
Texto completoActas de conferencias sobre el tema "Oscillating Flow"
Disimile, P. J., J. M. Pyles y N. Toy. "Dynamic hydraulic jumps in oscillating containers". En MULTIPHASE FLOW 2007. Southampton, UK: WIT Press, 2007. http://dx.doi.org/10.2495/mpf070271.
Texto completoAshrafi, Nariman y Sepideh Samghani. "Oscillating Viscoelastic Flow". En ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-85635.
Texto completoWassen, Erik, Felix Kramer, Frank Thiele, Rene Grueneberger, Wolfram Hage y Robert Meyer. "Turbulent Drag Reduction by Oscillating Riblets". En 4th Flow Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-4204.
Texto completoShliomis, Mark. "Non-Newtonian Ferrofluid Flow in Oscillating Magnetic Field". En FLOW DYNAMICS: The Second International Conference on Flow Dynamics. AIP, 2006. http://dx.doi.org/10.1063/1.2204532.
Texto completoYachi, S. "Phase Separation of Block Copolymers Driven by Oscillating Particles". En FLOW DYNAMICS: The Second International Conference on Flow Dynamics. AIP, 2006. http://dx.doi.org/10.1063/1.2204563.
Texto completoZagitov, R. A., N. V. Shuvaev, A. N. Dushko y Yu N. Shmotin. "Numerical Simulation of Unsteady Flow Around Oscillating Blade". En ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-69458.
Texto completoLiang, Shibin. "Oscillating Characteristics of Slug Flow in Oscillating Heat Pipes". En 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-3416.
Texto completoGioria, Rafael S., Bruno S. Carmo y Julio R. Meneghini. "Three Dimensional Wake Structures of Flow Around an Oscillating Circular Cylinder". En ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2007. http://dx.doi.org/10.1115/omae2007-29268.
Texto completoTagawa, F. "Nonlinear Energy Response to Oscillating Temperature in the Free Energy Landscape Picture". En FLOW DYNAMICS: The Second International Conference on Flow Dynamics. AIP, 2006. http://dx.doi.org/10.1063/1.2204487.
Texto completoTrujillo, Steven, David Bogard, Kenneth Ball, Steven Trujillo, David Bogard y Kenneth Ball. "Turbulent boundary layer drag reduction using an oscillating wall". En 4th Shear Flow Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-1870.
Texto completoInformes sobre el tema "Oscillating Flow"
Lin, C. X. Heat Transfer Enhancement Through Self-Sustained Oscillating Flow in Microchannels. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2006. http://dx.doi.org/10.21236/ada460536.
Texto completoAli, Aamir, Surayya Saba, Saleem Asghar y Salman Saleem. Thermal and Concentration Effects of Unsteady Flow of Non-Newtonian Fluid over an Oscillating Plate. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, mayo de 2018. http://dx.doi.org/10.7546/crabs.2018.04.04.
Texto completoChao, Shenn-Yu y Ping-Tung Shaw. Nonhydrostatic Numerical Investigations of Oscillating Flow Over Sills: Generation of Internal Tides and Solitary Waves. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2006. http://dx.doi.org/10.21236/ada630994.
Texto completoChao, Shenn-Yu. Nonhydrostatic Numerical Investigations of Oscillating Flow over Sills: Generation of Internal Tides and Solitary Waves. Fort Belvoir, VA: Defense Technical Information Center, enero de 2007. http://dx.doi.org/10.21236/ada460750.
Texto completoJ.C. Lin y D. Rockwell. Organized Oscillations of Initially-Turbulent Flow Past a Cavity. Office of Scientific and Technical Information (OSTI), septiembre de 2002. http://dx.doi.org/10.2172/821949.
Texto completoM. Geveci, P. Oshkai, D. Rockwell, J-C. Lin y M. Pollack. Imaging of the Self-Excited Oscillation of Flow Past a Cavity During Generation of a Flow Tone. Office of Scientific and Technical Information (OSTI), mayo de 2002. http://dx.doi.org/10.2172/821957.
Texto completoMurray, B. T., G. B. McFadden y S. R. Coriell. Stabilization of Taylor-Couette flow due to time-periodic outer cylinder oscillation. Gaithersburg, MD: National Institute of Standards and Technology, 1990. http://dx.doi.org/10.6028/nist.ir.90-4283.
Texto completoJEPSEN, RICHARD A., JESSE D. ROBERTS, JOSEPH Z. GAILANI y S. JARRELL SMITH. The SEAWOLF Flume: Sediment Erosion Actuated by Wave Oscillations and Linear Flow. Office of Scientific and Technical Information (OSTI), enero de 2002. http://dx.doi.org/10.2172/800775.
Texto completoGharib, M., A. Roshko y V. Sarohia. Effect of Flow Oscillations on Cavity Drag and a Technique for Their Control. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1985. http://dx.doi.org/10.21236/ada165732.
Texto completoP Oshkai, M Geveci, D Rockwell y M Pollack. Imaging of Acoustically Coupled Oscillations Due to Flow Past a Shallow Cavity: Effect of Cavity Length Scale. Office of Scientific and Technical Information (OSTI), mayo de 2004. http://dx.doi.org/10.2172/836450.
Texto completo