Literatura académica sobre el tema "Orthogonal time of flight"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Orthogonal time of flight".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Orthogonal time of flight"
Dawson, J. H. J. y M. Guilhaus. "Orthogonal-acceleration time-of-flight mass spectrometer". Rapid Communications in Mass Spectrometry 3, n.º 5 (mayo de 1989): 155–59. http://dx.doi.org/10.1002/rcm.1290030511.
Texto completoGuilhaus, M., D. Selby y V. Mlynski. "Orthogonal acceleration time-of-flight mass spectrometry". Mass Spectrometry Reviews 19, n.º 2 (2000): 65–107. http://dx.doi.org/10.1002/(sici)1098-2787(2000)19:2<65::aid-mas1>3.0.co;2-e.
Texto completoBimurzaev, Seitkerim, Nakhypbek Aldiyarov, Yerkin Yerzhigitov, Akmaral Tlenshiyeva y Ruslan Kassym. "Improving the resolution and sensitivity of an orthogonal time-of-flight mass spectrometer with orthogonal ion injection". Eastern-European Journal of Enterprise Technologies 6, n.º 5 (126) (28 de diciembre de 2023): 43–54. http://dx.doi.org/10.15587/1729-4061.2023.290649.
Texto completoBelov, Mikhail E., Michael A. Buschbach, David C. Prior, Keqi Tang y Richard D. Smith. "Multiplexed Ion Mobility Spectrometry-Orthogonal Time-of-Flight Mass Spectrometry". Analytical Chemistry 79, n.º 6 (marzo de 2007): 2451–62. http://dx.doi.org/10.1021/ac0617316.
Texto completoHuang, Rongfu, Bochao Zhang, Dongxuan Zou, Wei Hang, Jian He y Benli Huang. "Elemental Imaging via Laser Ionization Orthogonal Time-of-Flight Mass Spectrometry". Analytical Chemistry 83, n.º 3 (febrero de 2011): 1102–7. http://dx.doi.org/10.1021/ac1029693.
Texto completoIbrahim, Yehia, Mikhail E. Belov, Aleksey V. Tolmachev, David C. Prior y Richard D. Smith. "Ion Funnel Trap Interface for Orthogonal Time-of-Flight Mass Spectrometry". Analytical Chemistry 79, n.º 20 (octubre de 2007): 7845–52. http://dx.doi.org/10.1021/ac071091m.
Texto completoDodonov, A. F., V. I. Kozlovski, I. V. Soulimenkov, V. V. Raznikov, A. V. Loboda, Zhou Zhen, T. Horwath y H. Wollnik. "High-Resolution Electrospray Ionization Orthogonal-Injection Time-of-Flight Mass Spectrometer". European Journal of Mass Spectrometry 6, n.º 6 (diciembre de 2000): 481–90. http://dx.doi.org/10.1255/ejms.378.
Texto completoHuang, Rongfu, Yiming Lin, Lingfeng Li, Wei Hang, Jian He y Benli Huang. "Two-Dimensional Separation in Laser Ionization Orthogonal Time-of-Flight Mass Spectrometry". Analytical Chemistry 82, n.º 7 (abril de 2010): 3077–80. http://dx.doi.org/10.1021/ac902981j.
Texto completoClowers, Brian H., Mikhail E. Belov, David C. Prior, William F. Danielson, Yehia Ibrahim y Richard D. Smith. "Pseudorandom Sequence Modifications for Ion Mobility Orthogonal Time-of-Flight Mass Spectrometry". Analytical Chemistry 80, n.º 7 (abril de 2008): 2464–73. http://dx.doi.org/10.1021/ac7022712.
Texto completoHashimoto, Yuichiro, Izumi Waki, Kiyomi Yoshinari, Tsukasa Shishika y Yasushi Terui. "Orthogonal trap time-of-flight mass spectrometer using a collisional damping chamber". Rapid Communications in Mass Spectrometry 19, n.º 2 (2005): 221–26. http://dx.doi.org/10.1002/rcm.1781.
Texto completoTesis sobre el tema "Orthogonal time of flight"
Papanastasiou, Dimitris. "Space velocity correlation in orthogonal time-of-flight mass spectrometry". Thesis, Manchester Metropolitan University, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423073.
Texto completoSelby, David Sean School of Chemical Sciences UNSW. "Matrix assisted laser desorption/ionization orthogonal acceleration time-of-flight mass spectrometry: development and characterization of a new instrument". Awarded by:University of New South Wales. School of Chemical Sciences, 2002. http://handle.unsw.edu.au/1959.4/18784.
Texto completoWilliams, C. M. "Development of an orthogonal acceleration time-of-flight mass spectrometer : structural and quantitative applications in mass spectrometry". Thesis, Swansea University, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.636619.
Texto completoRuotolo, Brandon Thomas. "Development of matrix assisted laser desorption ionization-ion mobility-orthogonal time-of-flight mass spectrometry as a tool for proteomics". Diss., Texas A&M University, 2003. http://hdl.handle.net/1969.1/2203.
Texto completoPaxton, Thanai. "Ultra-high sensitivity unambiguous sequencing on a novel geometry quadrupole orthogonal-acceleration time of flight mass spectrometer, the Q-TOF". Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322004.
Texto completoWestberg, Michael. "Time of Flight Based Teat Detection". Thesis, Linköping University, Department of Electrical Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-19292.
Texto completoTime of flight is an imaging technique with uses depth information to capture 3D information in a scene. Recent developments in the technology have made ToF cameras more widely available and practical to work with. The cameras now enable real time 3D imaging and positioning in a compact unit, making the technology suitable for variety of object recognition tasks
An object recognition system for locating teats is at the center of the DeLaval VMS, which is a fully automated system for milking cows. By implementing ToF technology as part of the visual detection procedure, it would be possible to locate and track all four teat’s positions in real time and potentially provide an improvement compared with the current system.
The developed algorithm for teat detection is able to locate teat shaped objects in scenes and extract information of their position, width and orientation. These parameters are determined with an accuracy of millimeters. The algorithm also shows promising results when tested on real cows. Although detecting many false positives the algorithm was able to correctly detected 171 out of 232 visible teats in a test set of real cow images. This result is a satisfying proof of concept and shows the potential of ToF technology in the field of automated milking.
Le, Sellier Francois 1974. "Discrete real-time flight plan optimization". Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/50629.
Texto completoIncludes bibliographical references (leaves 117-118).
Worldwide, the continuously growing air traffic induces a need for new ATM concepts to be defined. One possibility is using a more decentralized system predicated mainly around free routings (Free Flight), for a more flexible management of airspace. The present study first highlights the discrepancies and inefficiencies of the current best flightplan optimizing software that use the Cost Index concept before departure. It then investigates techniques to perform enhanced flight-plan optimizations en-route, with algorithms that are less complex than using the Cost Index. The long-haul flight leg that is considered through the simulations is London (UK) - Boston (MA, USA), flown on a constant flight level. This study shows that running another optimization at the Top of Climb point reduces the average delay at destination from 6.9 minutes to 5.0 minutes. Then, the more futuristic method of considering discrete flight-plan optimizations, while en-route using updated weather forecasts, provides results that are more interesting. If the weather forecasts and the optimizations are done simultaneously every 3-hour or 1.5-hour, the average delay respectively becomes 2.6 minutes or 2.0 minutes. The second part of this work investigates ways of performing a Linear Program to fly a route close to a 4D-trajectory. This study provides ways of determining the exact weight values for the different state variables used in the cost function to minimize.
by Francois Le Sellier.
S.M.
Pettersson, Lucas. "Localization with Time-of-Flight cameras". Thesis, KTH, Numerisk analys, NA, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273788.
Texto completoTime-of-flight (ToF)-kameror blir en allt vanligare sensor i mobiltelefoner. Dessa sensorer kan producera djupmätningar i ett rutnät med relativt hög frekvens. Med hjälp av dessa djupmätningar kan ett punktmoln som representerar den fångade scenen produceras. Tidigare forskning har gjorts med hjälp av ToF- eller LIDAR-bilder för att lokalisera kameran. Här undersöks flera metoder för att lokalisera kameran med hjälp av ett punktmoln och en triangulering av en modell. Algoritmerna bestod till största delen av ICP-varianter samt en relativt ny metod som heter Corrective Gradient Refinement (CGR). Resultaten som erhållits från genererade data indikerar att vissa av metoderna är lämplig för realtidsapplikationer och felet på positioneringen är jämförbart med dem som hittades i tidigare resultat.
Tran, Le Chung. "Complex orthogonal space-time processing in wireless communications". Access electronically, 2006. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20060726.133841/index.html.
Texto completoBouziane, R. "Real-time optical orthogonal frequency division multiplexing transceivers". Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1383794/.
Texto completoLibros sobre el tema "Orthogonal time of flight"
Liang, Guan Yong y Tjhung Tjeng Thiang, eds. Quasi-orthogonal space-time block code. London: Distributed by World Scientific, 2007.
Buscar texto completoAllāh, Imilī Naṣr. Flight against time. Charlottetown, P.E.I: Ragweed Press, 1987.
Buscar texto completoAllāh, Imilī Naṣr. Flight against time. Charlottetown, P.E.I: Ragweed Press, 1987.
Buscar texto completoAllāh, Imilī Naṣr. Flight against time. Austin, Tex: Center for Middle Eastern Studies, University of Texas at Austin, 1997.
Buscar texto completoLe Tran, Chung, Tadeusz A. Wysocki, Alfred Mertins y Jennifer Seberry. Complex Orthogonal Space-Time Processing in Wireless Communications. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-29544-2.
Texto completoTran, Le Chung. Complex orthogonal space-time processing in wireless communications. New York: Springer, 2011.
Buscar texto completoHansard, Miles, Seungkyu Lee, Ouk Choi y Radu Horaud. Time-of-Flight Cameras. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4658-2.
Texto completoKunstmuseum, Bergen y Listasfn Reykjavikur, eds. Time: Suspend your flight. Bergen: Bergen Kunstmuseum, 2000.
Buscar texto completoKight, Pat. The flight of time. Corvallis, Or: printed by Cascade Printing, 1988.
Buscar texto completoCotter, Robert J., ed. Time-of-Flight Mass Spectrometry. Washington, DC: American Chemical Society, 1993. http://dx.doi.org/10.1021/bk-1994-0549.
Texto completoCapítulos de libros sobre el tema "Orthogonal time of flight"
Fjeldsted, John C. "Accurate Mass Measurements With Orthogonal Axis Time-of-Flight Mass Spectrometry". En Liquid Chromatography Time-of-Flight Mass Spectrometry, 1–15. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470429969.ch1.
Texto completoKrutchinsky, A. N., I. V. Chernushevich, A. V. Loboda, W. Ens y K. G. Standing. "Measurements of Protein Structure and Noncovalent Interactions by Time-of-Flight Mass Spectrometry with Orthogonal Ion Injection". En Mass Spectrometry in Biology & Medicine, 17–30. Totowa, NJ: Humana Press, 2000. http://dx.doi.org/10.1007/978-1-59259-719-2_2.
Texto completoTolimieri, Richard y Myoung An. "Orthogonal projection theorem". En Time-Frequency Representations, 135–39. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-4152-2_9.
Texto completoDewilde, Patrick y Alle-Jan van der Veen. "Orthogonal Embedding". En Time-Varying Systems and Computations, 337–62. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-2817-0_12.
Texto completoSchwab, Manfred. "Time of Flight". En Encyclopedia of Cancer, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27841-9_5818-2.
Texto completoShekhar, Shashi y Hui Xiong. "Time of Flight". En Encyclopedia of GIS, 1156. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-35973-1_1384.
Texto completoGómez, Víctor. "Orthogonal Projection". En Multivariate Time Series With Linear State Space Structure, 1–60. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28599-3_1.
Texto completoKim, Seong-Eun y Dennis L. Parker. "Time-of-Flight Angiography". En Magnetic Resonance Angiography, 39–50. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-1686-0_2.
Texto completoBronger, Torsten. "Time-of-Flight Analysis". En Advanced Characterization Techniques for Thin Film Solar Cells, 203–29. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527636280.ch9.
Texto completoLechner, Ruep E. "Time-of-Flight Spectrometry". En Neutrons in Soft Matter, 203–68. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470933886.ch8.
Texto completoActas de conferencias sobre el tema "Orthogonal time of flight"
Zollars, Michael D. y Richard G. Cobb. "Simplex Methods for Optimal Control of Unmanned Aircraft Flight Trajectories". En ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5031.
Texto completovan Paridon, Andrew, Marko Bacic y Peter T. Ireland. "Kalman Filter Development for Real Time Proper Orthogonal Decomposition Disc Temperature Model". En ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-56330.
Texto completoPrince, Jerry L. "Tomographic Imaging of Vector Fields". En Signal Recovery and Synthesis. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/srs.1995.rtua1.
Texto completoRaman, Deepa Anantha, Bruno Comesaña Cuervo, Viktória Jurcáková, Arnau Busom Vidal, Estelle Crouzet, Antoni Eritja Olivella, Juan Gracia García-Lisbon et al. "A 3-axis stabilisation platform to improve experiment conditions in parabolic flights". En Symposium on Space Educational Activities (SSAE). Universitat Politècnica de Catalunya, 2022. http://dx.doi.org/10.5821/conference-9788419184405.132.
Texto completoLesoinne, Michel y Charbel Farhat. "Re-Engineering of an Aeroelastic Code for Solving Eigen Problems in All Flight Regimes". En ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0171.
Texto completoHollberg, L., Steven Chu, John E. Bjorkholm, Alex Cable y A. Ashkin. "Laser cooling and confining of atoms". En OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/oam.1985.wv2.
Texto completoMORELLI, EUGENE. "Nonlinear aerodynamic modeling using multivariate orthogonal functions". En Flight Simulation and Technologies. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3636.
Texto completoPashilkar, A. y S. Pradeep. "Unsteady aerodynamic modelling using multivariate orthogonal polynomials". En 24th Atmospheric Flight Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-4014.
Texto completoChavez, Octavio V., Sezsy Y. Yusuf y Mohammad M. Lone. "Application of Multivariate Orthogonal Functions to Identify Aircraft Flutter Modes". En AIAA Atmospheric Flight Mechanics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-0695.
Texto completoMorelli, Eugene A. "Transfer Function Identification using Orthogonal Fourier Transform Modeling Functions". En AIAA Atmospheric Flight Mechanics (AFM) Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-4749.
Texto completoInformes sobre el tema "Orthogonal time of flight"
Copley, John R. D. Neutron time-of-flight spectroscopy. Gaithersburg, MD: National Institute of Standards and Technology, 1998. http://dx.doi.org/10.6028/nist.ir.6205.
Texto completoDietrick, Robert A. Hypersonic Flight: Time To Go Operational. Fort Belvoir, VA: Defense Technical Information Center, febrero de 2013. http://dx.doi.org/10.21236/ad1018856.
Texto completoZare, Richard N., Matthew D. Robbins, Griffin K. Barbula y Richard Perry. Hadamard Transform Time-of-Flight Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, enero de 2010. http://dx.doi.org/10.21236/ada564594.
Texto completoChiang, I.-Hung, Adam Rusek y M. Sivertz. Time of Flight of NSRL Beams. Office of Scientific and Technical Information (OSTI), octubre de 2005. http://dx.doi.org/10.2172/1775544.
Texto completoWatson, Thomas B. Proton Transfer Time-of-Flight Mass Spectrometer. Office of Scientific and Technical Information (OSTI), marzo de 2016. http://dx.doi.org/10.2172/1251396.
Texto completoZare, Richard N., Matthew D. Robbins, Griffin K. Barbula y Richard Perry. Hadamard Transform Time-of-Flight Mass Spectrometry. Fort Belvoir, VA: Defense Technical Information Center, enero de 2010. http://dx.doi.org/10.21236/ada589689.
Texto completoKponou, A., A. Hershcovitch, D. McCafferty y F. Usack. A TIME-OF-FLIGHT SPECTROMETER FOR SuperEBIS. Office of Scientific and Technical Information (OSTI), enero de 1994. http://dx.doi.org/10.2172/1151297.
Texto completoYip, K. Polarization with various Time-of-Flight cuts. Office of Scientific and Technical Information (OSTI), enero de 2006. http://dx.doi.org/10.2172/1157488.
Texto completoH. FUNSTEN. IMAGING TIME-OF-FLIGHT ION MASS SPECTROGRAPH. Office of Scientific and Technical Information (OSTI), noviembre de 2000. http://dx.doi.org/10.2172/768176.
Texto completoCandy, James y Karl Fisher. Time-of-Flight Estimation for Nondestructive Evaluation. Office of Scientific and Technical Information (OSTI), enero de 2021. http://dx.doi.org/10.2172/1762882.
Texto completo