Artículos de revistas sobre el tema "Organotypic spinal cord slices"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Organotypic spinal cord slices".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Biancotti, Juan C., Kendal A. Walker, Guihua Jiang, Julie Di Bernardo, Lonnie D. Shea y Shaun M. Kunisaki. "Hydrogel and neural progenitor cell delivery supports organotypic fetal spinal cord development in an ex vivo model of prenatal spina bifida repair". Journal of Tissue Engineering 11 (enero de 2020): 204173142094383. http://dx.doi.org/10.1177/2041731420943833.
Texto completoSypecka, Joanna, Sylwia Koniusz, Maria Kawalec y Anna Sarnowska. "The Organotypic Longitudinal Spinal Cord Slice Culture for Stem Cell Study". Stem Cells International 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/471216.
Texto completoHaque, Azizul, Donald C. Shields, Arabinda Das, Abhay Varma, Russel J. Reiter y Narendra L. Banik. "Melatonin receptor-mediated attenuation of excitotoxic cell death in cultured spinal cord slices". Melatonin Research 4, n.º 2 (30 de abril de 2021): 336–47. http://dx.doi.org/10.32794/mr11250098.
Texto completoShahar, A., S. Lustig, Y. Akov, Y. David, P. Schneider y R. Levin. "Different pathogenicity of encephalitic togaviruses in organotypic cultures of spinal cord slices". Journal of Neuroscience Research 25, n.º 3 (marzo de 1990): 345–52. http://dx.doi.org/10.1002/jnr.490250311.
Texto completoUcar, Buket, Sedef Yusufogullari y Christian Humpel. "Collagen hydrogels loaded with fibroblast growth factor-2 as a bridge to repair brain vessels in organotypic brain slices". Experimental Brain Research 238, n.º 11 (29 de agosto de 2020): 2521–29. http://dx.doi.org/10.1007/s00221-020-05907-7.
Texto completoLiu, Jing-Jie, Xiao-Yan Ding, Li Xiang, Feng Zhao y Sheng-Li Huang. "A novel method for oxygen glucose deprivation model in organotypic spinal cord slices". Brain Research Bulletin 135 (octubre de 2017): 163–69. http://dx.doi.org/10.1016/j.brainresbull.2017.10.010.
Texto completoRybachuk, O. A., Yu A. Lazarenko, V. V. Krotov y N. V. Voitenko. "Structural/Functional Characteristics of Organotypic Spinal Cord Slices under Conditions of Long-Lasting Culturing". Neurophysiology 49, n.º 2 (abril de 2017): 162–64. http://dx.doi.org/10.1007/s11062-017-9647-5.
Texto completoPhelps, P. E., R. P. Barber y J. E. Vaughn. "Nonradial migration of interneurons can be experimentally altered in spinal cord slice cultures". Development 122, n.º 7 (1 de julio de 1996): 2013–22. http://dx.doi.org/10.1242/dev.122.7.2013.
Texto completoRavikumar, Madhumitha, Seema Jain, Robert H. Miller, Jeffrey R. Capadona y Stephen M. Selkirk. "An organotypic spinal cord slice culture model to quantify neurodegeneration". Journal of Neuroscience Methods 211, n.º 2 (noviembre de 2012): 280–88. http://dx.doi.org/10.1016/j.jneumeth.2012.09.004.
Texto completoPatar, Azim, Peter Dockery, Siobhan McMahon y Linda Howard. "Ex Vivo Rat Transected Spinal Cord Slices as a Model to Assess Lentiviral Vector Delivery of Neurotrophin-3 and Short Hairpin RNA against NG2". Biology 9, n.º 3 (15 de marzo de 2020): 54. http://dx.doi.org/10.3390/biology9030054.
Texto completoLIU, JINGJIE, XIAOYAN DING, LI XIANG y SHENGLI HUANG. "Transplanted choroidal plexus epithelial cells can integrate with organotypic spinal cord slices into a new system". BIOCELL 46, n.º 6 (2022): 1537–44. http://dx.doi.org/10.32604/biocell.2022.018441.
Texto completoCzarnecki, Antonny, Vincent Magloire y Jürg Streit. "Local oscillations of spiking activity in organotypic spinal cord slice cultures". European Journal of Neuroscience 27, n.º 8 (abril de 2008): 2076–88. http://dx.doi.org/10.1111/j.1460-9568.2008.06171.x.
Texto completoLiu, Jing-Jie, Ya-Juan Huang, Li Xiang, Feng Zhao y Sheng-Li Huang. "A novel method of organotypic spinal cord slice culture in rats". NeuroReport 28, n.º 16 (noviembre de 2017): 1097–102. http://dx.doi.org/10.1097/wnr.0000000000000892.
Texto completoKim, Hyuk Min, Hong Jun Lee, Man Young Lee, Seung U. Kim y Byung Gon Kim. "Organotypic Spinal Cord Slice Culture to Study Neural Stem/Progenitor Cell Microenvironment in the Injured Spinal Cord". Experimental Neurobiology 19, n.º 2 (30 de septiembre de 2010): 106–13. http://dx.doi.org/10.5607/en.2010.19.2.106.
Texto completoLi, Bin, Xiao-Yun Liu, Zhe Li, Hui Bu, Meng-Meng Sun, Yan-Su Guo y Chun-Yan Li. "Effect of ALS IgG on Motor Neurons in Organotypic Spinal Cord Cultures". Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 35, n.º 2 (mayo de 2008): 220–25. http://dx.doi.org/10.1017/s0317167100008672.
Texto completoPandamooz, Sareh, Mohammad Saied Salehi, Mohammad Nabiuni y Leila Dargahi. "Valproic acid preserves motoneurons following contusion in organotypic spinal cord slice culture". Journal of Spinal Cord Medicine 40, n.º 1 (31 de agosto de 2016): 100–106. http://dx.doi.org/10.1080/10790268.2016.1213518.
Texto completoAn, Sung Su, William A. Pennant, Yoon Ha, Jin Soo Oh, Hyo Jin Kim, So-Jung Gwak, Do Heum Yoon y Keung Nyun Kim. "Hypoxia-induced expression of VEGF in the organotypic spinal cord slice culture". NeuroReport 22, n.º 2 (enero de 2011): 55–60. http://dx.doi.org/10.1097/wnr.0b013e3283418b00.
Texto completoLee, Yu-Shang, Janie Baratta, Jen Yu, Vernon W. Lin y Richard T. Robertson. "aFGF Promotes Axonal Growth in Rat Spinal Cord Organotypic Slice Co-Cultures". Journal of Neurotrauma 19, n.º 3 (marzo de 2002): 357–67. http://dx.doi.org/10.1089/089771502753594927.
Texto completoStreit, J. "Regular oscillations of synaptic activity in spinal networks in vitro". Journal of Neurophysiology 70, n.º 3 (1 de septiembre de 1993): 871–78. http://dx.doi.org/10.1152/jn.1993.70.3.871.
Texto completoPandamooz, Sareh, Mohammad Saied Salehi, Mohammad Ismail Zibaii, Anahid Safari, Mohammad Nabiuni, Abolhassan Ahmadiani y Leila Dargahi. "Modeling traumatic injury in organotypic spinal cord slice culture obtained from adult rat". Tissue and Cell 56 (febrero de 2019): 90–97. http://dx.doi.org/10.1016/j.tice.2019.01.002.
Texto completoMazzone, Graciela L. y Andrea Nistri. "Electrochemical detection of endogenous glutamate release from rat spinal cord organotypic slices as a real-time method to monitor excitotoxicity". Journal of Neuroscience Methods 197, n.º 1 (abril de 2011): 128–32. http://dx.doi.org/10.1016/j.jneumeth.2011.01.033.
Texto completoMazzone, Graciela L. y Andrea Nistri. "Effect of the PARP-1 Inhibitor PJ 34 on Excitotoxic Damage Evoked by Kainate on Rat Spinal Cord Organotypic Slices". Cellular and Molecular Neurobiology 31, n.º 3 (29 de diciembre de 2010): 469–78. http://dx.doi.org/10.1007/s10571-010-9640-7.
Texto completoMagloire, Vincent y Jürg Streit. "Intrinsic activity and positive feedback in motor circuits in organotypic spinal cord slice cultures". European Journal of Neuroscience 30, n.º 8 (octubre de 2009): 1487–97. http://dx.doi.org/10.1111/j.1460-9568.2009.06978.x.
Texto completoCalderó, J., N. Brunet, O. Tarabal, L. Piedrafita, M. Hereu, V. Ayala y J. E. Esquerda. "Lithium prevents excitotoxic cell death of motoneurons in organotypic slice cultures of spinal cord". Neuroscience 165, n.º 4 (febrero de 2010): 1353–69. http://dx.doi.org/10.1016/j.neuroscience.2009.11.034.
Texto completoPark, Hwan-Woo, Hyo-Jin Jeon y Mi-Sook Chang. "Vascular endothelial growth factor enhances axonal outgrowth in organotypic spinal cord slices via vascular endothelial growth factor receptor 1 and 2". Tissue Engineering and Regenerative Medicine 13, n.º 5 (octubre de 2016): 601–9. http://dx.doi.org/10.1007/s13770-016-0051-9.
Texto completoElkhenany, Hoda, Pablo Bonilla, Esther Giraldo, Ana Alastrue Agudo, Michael J. Edel, María Jesus Vicent, Fernando Gisbert Roca et al. "A Hyaluronic Acid Demilune Scaffold and Polypyrrole-Coated Fibers Carrying Embedded Human Neural Precursor Cells and Curcumin for Surface Capping of Spinal Cord Injuries". Biomedicines 9, n.º 12 (16 de diciembre de 2021): 1928. http://dx.doi.org/10.3390/biomedicines9121928.
Texto completoJeong, Dong-Kee, Cyrus E. Taghavi, Kyung-Jin Song, Kwang-Bok Lee y Hyun-Wook Kang. "Organotypic Human Spinal Cord Slice Culture as an Alternative to Direct Transplantation of Human Bone Marrow Precursor Cells for Treating Spinal Cord Injury". World Neurosurgery 75, n.º 3-4 (marzo de 2011): 533–39. http://dx.doi.org/10.1016/j.wneu.2010.10.042.
Texto completoGerardo-Nava, Jose, Dorothee Hodde, Istvan Katona, Ahmet Bozkurt, Torsten Grehl, Harry W. M. Steinbusch, Joachim Weis y Gary A. Brook. "Spinal cord organotypic slice cultures for the study of regenerating motor axon interactions with 3D scaffolds". Biomaterials 35, n.º 14 (mayo de 2014): 4288–96. http://dx.doi.org/10.1016/j.biomaterials.2014.02.007.
Texto completoMin, Hyunjung, Li Xu, Roberta Parrott, Joanne Kurtzberg y Anthony Filiano. "Abstract 4 Umbilical Cord-Derived Mesenchymal Stromal Cells Suppress Neuroinflammation and Promote Remyelination in the Spinal Cord". Stem Cells Translational Medicine 11, Supplement_1 (1 de septiembre de 2022): S6. http://dx.doi.org/10.1093/stcltm/szac057.004.
Texto completoShichinohe, Hideo, Satoshi Kuroda, Sachiko Tsuji, Satoshi Yamaguchi, Shunsuke Yano, Jang-Bo Lee, Hiroyuki Kobayashi, Seiji Kikuchi, Kazutoshi Hida y Yoshinobu Iwasaki. "Bone Marrow Stromal Cells Promote Neurite Extension in Organotypic Spinal Cord Slice: Significance for Cell Transplantation Therapy". Neurorehabilitation and Neural Repair 22, n.º 5 (16 de mayo de 2008): 447–57. http://dx.doi.org/10.1177/1545968308315596.
Texto completoAmadio, Susanna, Chiara Parisi, Cinzia Montilli, Alberto Savio Carrubba, Savina Apolloni y Cinzia Volonté. "P2Y12Receptor on the Verge of a Neuroinflammatory Breakdown". Mediators of Inflammation 2014 (2014): 1–15. http://dx.doi.org/10.1155/2014/975849.
Texto completoDrexler, Berthold, Julia Grenz, Christian Grasshoff y Bernd Antkowiak. "Allopregnanolone Enhances GABAergic Inhibition in Spinal Motor Networks". International Journal of Molecular Sciences 21, n.º 19 (7 de octubre de 2020): 7399. http://dx.doi.org/10.3390/ijms21197399.
Texto completoCho, Jung-Sun, Hwan-Woo Park, Sang-Kyu Park, Sangho Roh, Soo-Kyung Kang, Ki-Suk Paik y Mi-Sook Chang. "Transplantation of mesenchymal stem cells enhances axonal outgrowth and cell survival in an organotypic spinal cord slice culture". Neuroscience Letters 454, n.º 1 (abril de 2009): 43–48. http://dx.doi.org/10.1016/j.neulet.2009.02.024.
Texto completoMazzone, G. L., M. Mladinic y A. Nistri. "Excitotoxic cell death induces delayed proliferation of endogenous neuroprogenitor cells in organotypic slice cultures of the rat spinal cord". Cell Death & Disease 4, n.º 10 (octubre de 2013): e902-e902. http://dx.doi.org/10.1038/cddis.2013.431.
Texto completoBiggs, James E., Paul A. Boakye, Naren Ganesan, Patrick L. Stemkowski, Aquilino Lantero, Klaus Ballanyi y Peter A. Smith. "Analysis of the long-term actions of gabapentin and pregabalin in dorsal root ganglia and substantia gelatinosa". Journal of Neurophysiology 112, n.º 10 (15 de noviembre de 2014): 2398–412. http://dx.doi.org/10.1152/jn.00168.2014.
Texto completoGuertin, Pierre A. y Jørn Hounsgaard. "Conditional Intrinsic Voltage Oscillations in Mature Vertebrate Neurons Undergo Specific Changes in Culture". Journal of Neurophysiology 95, n.º 3 (marzo de 2006): 2024–27. http://dx.doi.org/10.1152/jn.00832.2005.
Texto completoGao, Po, Xiaowei Ding, Tahir Muhammad Khan, Weifang Rong, Heike Franke y Peter Illes. "P2X7 receptor-sensitivity of astrocytes and neurons in the substantia gelatinosa of organotypic spinal cord slices of the mouse depends on the length of the culture period". Neuroscience 349 (mayo de 2017): 195–207. http://dx.doi.org/10.1016/j.neuroscience.2017.02.030.
Texto completoTashiro, Jun, Seiji Kikuchi, Kazuyoshi Shinpo, Riichiro Kishimoto, Sachiko Tsuji y Hidenao Sasaki. "Role of p53 in neurotoxicity induced by the endoplasmic reticulum stress agent tunicamycin in organotypic slice cultures of rat spinal cord". Journal of Neuroscience Research 85, n.º 2 (1 de febrero de 2007): 395–401. http://dx.doi.org/10.1002/jnr.21120.
Texto completoLarkum, Matthew E., Thomas Launey, Alexander Dityatev y Hans-R. Lüscher. "Integration of Excitatory Postsynaptic Potentials in Dendrites of Motoneurons of Rat Spinal Cord Slice Cultures". Journal of Neurophysiology 80, n.º 2 (1 de agosto de 1998): 924–35. http://dx.doi.org/10.1152/jn.1998.80.2.924.
Texto completoUlrich, D., R. Quadroni y H. R. Luscher. "Electronic structure of motoneurons in spinal cord slice cultures: a comparison of compartmental and equivalent cylinder models". Journal of Neurophysiology 72, n.º 2 (1 de agosto de 1994): 861–71. http://dx.doi.org/10.1152/jn.1994.72.2.861.
Texto completoCifra, Alessandra, Graciela L. Mazzone, Francesca Nani, Andrea Nistri y Miranda Mladinic. "Postnatal developmental profile of neurons and glia in motor nuclei of the brainstem and spinal cord, and its comparison with organotypic slice cultures". Developmental Neurobiology 72, n.º 8 (21 de junio de 2012): 1140–60. http://dx.doi.org/10.1002/dneu.20991.
Texto completoLarkum, M. E., M. G. Rioult y H. R. Luscher. "Propagation of action potentials in the dendrites of neurons from rat spinal cord slice cultures". Journal of Neurophysiology 75, n.º 1 (1 de enero de 1996): 154–70. http://dx.doi.org/10.1152/jn.1996.75.1.154.
Texto completoCho, Jung-Sun, Hwan-Woo Park, Sang-Kyu Park, Sangho Roh, Soo-Kyung Kang, Ki-Suk Paik y Mi-Sook Chang. "Corrigendum to “Transplantation of mesenchymal stem cells enhances axonal outgrowth and cell survival in an organotypic spinal cord slice culture” [Neurosci. Lett. 454 (1) (2009) 43–48]". Neuroscience Letters 460, n.º 1 (agosto de 2009): 102. http://dx.doi.org/10.1016/j.neulet.2009.05.026.
Texto completoLüscher, Hans-R. y Matthew E. Larkum. "Modeling Action Potential Initiation and Back-Propagation in Dendrites of Cultured Rat Motoneurons". Journal of Neurophysiology 80, n.º 2 (1 de agosto de 1998): 715–29. http://dx.doi.org/10.1152/jn.1998.80.2.715.
Texto completoSUGAI, Fuminobu, Yoichi YAMAMOTO y Saburo SAKODA. "Organotypic spinal cord culture using mice". Folia Pharmacologica Japonica 124, n.º 1 (2004): 19–23. http://dx.doi.org/10.1254/fpj.124.19.
Texto completoGlazova, Margarita V., Elena S. Pak y Alexander K. Murashov. "Neurogenic potential of spinal cord organotypic culture". Neuroscience Letters 594 (mayo de 2015): 60–65. http://dx.doi.org/10.1016/j.neulet.2015.03.041.
Texto completoLuscher, H.-R. y J. Streit. "A Novel In Vitro Approach for Studying the Segmental Motor System". Physiology 7, n.º 6 (1 de diciembre de 1992): 249–53. http://dx.doi.org/10.1152/physiologyonline.1992.7.6.249.
Texto completoNakayama, Kiyomi, Hiroshi Nishimaru y Norio Kudo. "Rhythmic Motor Activity in Thin Transverse Slice Preparations of the Fetal Rat Spinal Cord". Journal of Neurophysiology 92, n.º 1 (julio de 2004): 648–52. http://dx.doi.org/10.1152/jn.01029.2003.
Texto completoAsai, Tatsuya, Takashi Saka, Shuichi Terao, Hiroshi Ikeda y Kazuyuki Murase. "Intrinsic optical signals in rat spinal cord slices". Neuroscience Research 31 (enero de 1998): S134. http://dx.doi.org/10.1016/s0168-0102(98)82027-0.
Texto completoWeidenheim, K. M., Y. Kress, W. K. Rashbaum y W. D. Lyman. "ANTIBODY-ASSOCIATED MYELINOPATHY IN HUMAN FETAL SPINAL CORD ORGANOTYPIC CULTURES". Journal of Neuropathology and Experimental Neurology 54, n.º 3 (mayo de 1995): 465. http://dx.doi.org/10.1097/00005072-199505000-00233.
Texto completo