Literatura académica sobre el tema "Organotypic spinal cord slices"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Organotypic spinal cord slices".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Organotypic spinal cord slices"
Biancotti, Juan C., Kendal A. Walker, Guihua Jiang, Julie Di Bernardo, Lonnie D. Shea y Shaun M. Kunisaki. "Hydrogel and neural progenitor cell delivery supports organotypic fetal spinal cord development in an ex vivo model of prenatal spina bifida repair". Journal of Tissue Engineering 11 (enero de 2020): 204173142094383. http://dx.doi.org/10.1177/2041731420943833.
Texto completoSypecka, Joanna, Sylwia Koniusz, Maria Kawalec y Anna Sarnowska. "The Organotypic Longitudinal Spinal Cord Slice Culture for Stem Cell Study". Stem Cells International 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/471216.
Texto completoHaque, Azizul, Donald C. Shields, Arabinda Das, Abhay Varma, Russel J. Reiter y Narendra L. Banik. "Melatonin receptor-mediated attenuation of excitotoxic cell death in cultured spinal cord slices". Melatonin Research 4, n.º 2 (30 de abril de 2021): 336–47. http://dx.doi.org/10.32794/mr11250098.
Texto completoShahar, A., S. Lustig, Y. Akov, Y. David, P. Schneider y R. Levin. "Different pathogenicity of encephalitic togaviruses in organotypic cultures of spinal cord slices". Journal of Neuroscience Research 25, n.º 3 (marzo de 1990): 345–52. http://dx.doi.org/10.1002/jnr.490250311.
Texto completoUcar, Buket, Sedef Yusufogullari y Christian Humpel. "Collagen hydrogels loaded with fibroblast growth factor-2 as a bridge to repair brain vessels in organotypic brain slices". Experimental Brain Research 238, n.º 11 (29 de agosto de 2020): 2521–29. http://dx.doi.org/10.1007/s00221-020-05907-7.
Texto completoLiu, Jing-Jie, Xiao-Yan Ding, Li Xiang, Feng Zhao y Sheng-Li Huang. "A novel method for oxygen glucose deprivation model in organotypic spinal cord slices". Brain Research Bulletin 135 (octubre de 2017): 163–69. http://dx.doi.org/10.1016/j.brainresbull.2017.10.010.
Texto completoRybachuk, O. A., Yu A. Lazarenko, V. V. Krotov y N. V. Voitenko. "Structural/Functional Characteristics of Organotypic Spinal Cord Slices under Conditions of Long-Lasting Culturing". Neurophysiology 49, n.º 2 (abril de 2017): 162–64. http://dx.doi.org/10.1007/s11062-017-9647-5.
Texto completoPhelps, P. E., R. P. Barber y J. E. Vaughn. "Nonradial migration of interneurons can be experimentally altered in spinal cord slice cultures". Development 122, n.º 7 (1 de julio de 1996): 2013–22. http://dx.doi.org/10.1242/dev.122.7.2013.
Texto completoRavikumar, Madhumitha, Seema Jain, Robert H. Miller, Jeffrey R. Capadona y Stephen M. Selkirk. "An organotypic spinal cord slice culture model to quantify neurodegeneration". Journal of Neuroscience Methods 211, n.º 2 (noviembre de 2012): 280–88. http://dx.doi.org/10.1016/j.jneumeth.2012.09.004.
Texto completoPatar, Azim, Peter Dockery, Siobhan McMahon y Linda Howard. "Ex Vivo Rat Transected Spinal Cord Slices as a Model to Assess Lentiviral Vector Delivery of Neurotrophin-3 and Short Hairpin RNA against NG2". Biology 9, n.º 3 (15 de marzo de 2020): 54. http://dx.doi.org/10.3390/biology9030054.
Texto completoTesis sobre el tema "Organotypic spinal cord slices"
Rioult-Pedotti, Marc Guy. "Optical multisite recording of neural activity patterns in organotypic spinal cord tissue cultures /". [S.l.] : [s.n.], 1991. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=9393.
Texto completoCocchi, M. A. "THE MELATONIN PROTECTIVE ROLE IN AN ORGANOTYPIC MODEL OF SPINAL CORD INJURY SECONDARY DAMAGE". Doctoral thesis, Università degli Studi di Milano, 2016. http://hdl.handle.net/2434/351674.
Texto completoAbdoun, Oussama. "Analyse spatiotemporelle de données MEA pour l'étude de la dynamique de l'activité de la moelle épinière et du tronc cérébral immatures chez la souris". Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR15266/document.
Texto completoImmature neural networks generate a peculiar type of activity that persists even in the absence of electrical inputs and was termed for this reason “endogenous”or “spontaneous”. This activity is ubiquitous and was found involved in a wide range of developmental events. In vitro, it can be observed as calcium or electrical waves propagating over great distances, often invading the whole preparation,but its dynamics remain poorly described. In order to somewhat fill this gap,we used multielectrode arrays (MEAs) to characterise the spontaneous rhythmic activity in the mouse developing spinal cord, in both acute and cultured isolated hindbrain-spinal cord preparations.To extract relevant information from the massive amounts of data yielded by MEA recordings, adapted analysis tools are needed. Thus, we have developedmethods for the detection, classification and mapping of spatiotemporal patternsof activity in multichannel data. Our mapping approach is based on the thin plates pline interpolation and includes the possibility to combine maps of activity with anatomical or stained data for multimodal imaging.These methods allowed us to analyse in great detail the evolution of spontaneousactivity at early stages (E12.5–E15.5). In addition, we have localised theinitiation site of E14.5 activity in the medulla and shown that it matches a densemidline population of serotoninergic neurons, suggesting a new role for 5-HTpathways in the maturation of spinal networks. Finally, we have recorded andtracked spontaneous limb movements of E14.5 embryos and found that features of motility were consistent with patterns of spinal activity
Parisio, Carmen. "VEGF-A/VEGFRs system in neuropathies: a crossroad between pain and neuroprotection". Doctoral thesis, 2022. http://hdl.handle.net/2158/1259994.
Texto completoPettersson, Jennie. "Neuroprotective effects of hyaluronic acid hydrogel on organotypic spinal cord cultures". Thesis, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-205222.
Texto completoXie, Huiwen. "Differentiation of motoneuron electrical properties in organotypic culture of rat spinal cord". 1994. http://catalog.hathitrust.org/api/volumes/oclc/32440401.html.
Texto completoMorais, Hermes Manuel Medina. "Development of secretome-based therapy by motor neuron modulation of miRNA-124 in ALS mouse models". Master's thesis, 2020. http://hdl.handle.net/10362/111128.
Texto completoCasa da Misericórdia de Lisboa (SCML), project ref. ALSResearch Grant ELA-2015-002
Capítulos de libros sobre el tema "Organotypic spinal cord slices"
Deng, Ping y Zao C. Xu. "Whole-Cell Patch-Clamp Recordings on Spinal Cord Slices". En Methods in Molecular Biology, 65–72. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-561-9_4.
Texto completoBiggs, James E., Van B. Lu, Helena J. Kim, Aaron Lai, Kathryn G. Todd, Klaus Ballanyi, William F. Colmers y Peter A. Smith. "Defined Medium Organotypic Cultures of Spinal Cord Put ‘Pain in a Dish’". En Isolated Central Nervous System Circuits, 405–36. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-020-5_14.
Texto completoPehl, U., H. A. Schmid y E. Simon. "Lamina-Specific Effects of Nitric Oxide on Temperature Sensitive Neurons in Rat Spinal Cord Slices". En Thermal Balance in Health and Disease, 45–51. Basel: Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-7429-8_6.
Texto completoNishi, S., M. Yoshimura y C. Polosa. "Effect of Noradrenaline on the Electrical Activities of Lateral Horn Cells in Cat Spinal Cord Slices". En Histochemistry and Cell Biology of Autonomic Neurons and Paraganglia, 345–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72749-8_60.
Texto completoMurase, K., H. Ikeda, S. Terao y T. Asai. "Slow Intrinsic Optical Signals in Rat Spinal Cord Slices and Their Modulation by Low-Frequency Stimulation". En Slow Synaptic Responses and Modulation, 429–35. Tokyo: Springer Japan, 2000. http://dx.doi.org/10.1007/978-4-431-66973-9_59.
Texto completoAllerton, C. A., P. R. Boden y R. G. Hill. "In Vitro Studies on Neurones of the Superficial Dorsal Horn in Slices of 9–16 Day Old Rat Spinal Cord". En Processing of Sensory Information in the Superficial Dorsal Horn of the Spinal Cord, 395–98. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0825-6_38.
Texto completoShahar, A., S. Lustig, Y. Akov, Y. David, P. Schneider y R. Levin. "Spinal Cord Slices with Attached Dorsal Root Ganglia: A Culture Model for the Study of Pathogenicity of Encephalitic Viruses". En Plasticity and Regeneration of the Nervous System, 111–19. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-8047-4_12.
Texto completoCrain, Stanley M. "Neuropharmacological Analyses in Organotypic Cultures of Spinal Cord and Dorsal Root Ganglia". En Cell Culture, 75–86. Elsevier, 1990. http://dx.doi.org/10.1016/b978-0-12-185254-2.50010-3.
Texto completo