Literatura académica sobre el tema "Orexin 1 receptor"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Orexin 1 receptor".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Orexin 1 receptor"
Banerjee, Indrajit. "Orexin Receptor Competitive Antagonists: A Novel target of the Sedative and hypnotics drugs for the pharmacotherapy of Insomnia". Nepal Journal of Epidemiology 8, n.º 1 (24 de septiembre de 2018): 713–15. http://dx.doi.org/10.3126/nje.v8i1.21139.
Texto completoJöhren, Olaf, Norbert Brüggemann, Andreas Dendorfer y Peter Dominiak. "Gonadal Steroids Differentially Regulate the Messenger Ribonucleic Acid Expression of Pituitary Orexin Type 1 Receptors and Adrenal Orexin Type 2 Receptors". Endocrinology 144, n.º 4 (1 de abril de 2003): 1219–25. http://dx.doi.org/10.1210/en.2002-0030.
Texto completoPatel, Vanlata H., Emmanouil Karteris, Jing Chen, Ioannis Kyrou, Harman S. Mattu, Georgios K. Dimitriadis, Glenn Rodrigo et al. "Functional cardiac orexin receptors: role of orexin-B/orexin 2 receptor in myocardial protection". Clinical Science 132, n.º 24 (13 de diciembre de 2018): 2547–64. http://dx.doi.org/10.1042/cs20180150.
Texto completoLópez, M., R. Señaris, R. Gallego, T. García-Caballero, F. Lago, L. Seoane, F. Casanueva y C. Diéguez. "Orexin Receptors Are Expressed in the Adrenal Medulla of the Rat". Endocrinology 140, n.º 12 (1 de diciembre de 1999): 5991–94. http://dx.doi.org/10.1210/endo.140.12.7287.
Texto completoDigby, J. E., J. Chen, J. Y. Tang, H. Lehnert, R. N. Matthews y H. S. Randeva. "Orexin receptor expression in human adipose tissue: effects of orexin-A and orexin-B". Journal of Endocrinology 191, n.º 1 (octubre de 2006): 129–36. http://dx.doi.org/10.1677/joe.1.06886.
Texto completoKatzman, Martin A. y Matthew P. Katzman. "Neurobiology of the Orexin System and Its Potential Role in the Regulation of Hedonic Tone". Brain Sciences 12, n.º 2 (24 de enero de 2022): 150. http://dx.doi.org/10.3390/brainsci12020150.
Texto completoBarreiro, M. L., R. Pineda, V. M. Navarro, M. Lopez, J. S. Suominen, L. Pinilla, R. Señaris et al. "Orexin 1 Receptor Messenger Ribonucleic Acid Expression and Stimulation of Testosterone Secretion by Orexin-A in Rat Testis". Endocrinology 145, n.º 5 (1 de mayo de 2004): 2297–306. http://dx.doi.org/10.1210/en.2003-1405.
Texto completoShirasaka, Tetsuro, Satoshi Miyahara, Takato Kunitake, Qing-Hua Jin, Kazuo Kato, Mayumi Takasaki y Hiroshi Kannan. "Orexin depolarizes rat hypothalamic paraventricular nucleus neurons". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 281, n.º 4 (1 de octubre de 2001): R1114—R1118. http://dx.doi.org/10.1152/ajpregu.2001.281.4.r1114.
Texto completoChen, Jing y Harpal S. Randeva. "Genomic Organization of Mouse Orexin Receptors: Characterization of Two Novel Tissue-Specific Splice Variants". Molecular Endocrinology 18, n.º 11 (1 de noviembre de 2004): 2790–804. http://dx.doi.org/10.1210/me.2004-0167.
Texto completoBruns, Ingmar, Patrick Cadeddu, Sebastian Büst, Boris Goerg, Johannes C. Fischer, Oliver Selbach, Ulrich Steidl et al. "The Neuropeptides Orexin a and B Have An Impact on Functional Properties of Human CD34+ Stem and Progenitor Cells." Blood 112, n.º 11 (16 de noviembre de 2008): 1393. http://dx.doi.org/10.1182/blood.v112.11.1393.1393.
Texto completoTesis sobre el tema "Orexin 1 receptor"
Milasta, Sandra. "Regulation of the orexin 1 receptor by β-arrestins". Thesis, University of Glasgow, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.404279.
Texto completoIshii, Yuko. "Detailed behavioural assessment of the anorectic response to SB-334867, a selective orexin-1 receptor antagonist". Thesis, University of Leeds, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.418764.
Texto completoBoschen, Karen Elizabeth. "Effects of Systemic and Intrabasalis Administration of the Orexin-1 Receptor Antagonist, SB-334867, on Attentional Performance in Rats". W&M ScholarWorks, 2009. https://scholarworks.wm.edu/etd/1539626609.
Texto completoMORELLO, GIOVANNA. "OREXIN-INDUCED ENDOCANNABINOID BIOSYNTHESIS DISABLES SATIETY-INDUCING POMC NEURONS". Doctoral thesis, 2016. http://hdl.handle.net/11562/939236.
Texto completoSeveral studies reveal the involvement of cannabinoids and orexin-A (OX-A) in the regulation of food intake. Starting from this basis, we hypothesized that OX-A regulates the pro-opiomelanocortin (POMC) neurons, which are the main cannabinoid target in the hypothalamus. POMC neurons induce satiety through the synthesis and release of α-MSH (melanocyte-stimulating hormone). Since both OX-A receptor-1 (OX-1R) and cannabinoid type 1 receptor (CB1R) are expressed in POMC neurons we sought to investigate the hypothesis that OX-A promotes appetite by inhibition of Pomc gene transcription (through the CB1R signaling) and, in exaggerated manner, during obesity. At this purpose we used murine obese models (ob/ob and HFD) and lean mice injected with OX-A. In obese mice, we found that leptin signal deficiency increases OX-A expression in fibers projecting to arcuate nucleus and promotes appetite by lowering POMC expression and α-MSH release. These effects occur by OX-A-mediated biosynthesis of the endocannabinoid 2-arachidonoyl glycerol (2-AG), the activation of ERK1/2 which inhibits its target STAT3 finally resulting in the reduction of the Pomc gene transcription. In lean mice, the injection of OX-A induces hyperphagia and weight gain, which are both prevented by the selective OX-1R antagonist SB334867. Notably, in human obese subjects, we found an inverse correlation between OX-A and α-MSH serum levels associated with alterations of transaminases. These results reveal an unknown role of OX-A to promote appetite acting through a severe reduction in POMC expression and POMC-derived α-MSH release, which are the main inhibitors of appetite.
Becker, Thorsten. "On the synaptic rearrangement in the hypothalamus and the periaqueductal gray in an animal model of obesity". Doctoral thesis, 2015. http://hdl.handle.net/11562/915001.
Texto completoObesity is a worldwide problem, affecting peoples‘ health and burdening healthcare systems. It is a complex interaction of endocrine and neural mechanisms underlying food intake, in particular, one of its pathological forms leading to obesity. Interestingly, patients as well as animal models suffering from abnormal feeding behavior display altered nociception. A renown mouse model for obesity is the leptin-deficient ob/ob mouse, our laboratory has demonstrated that the mainly excitatory innervation of orexin-expressing neurons (OX-N) in the lateral hypothalamus (LH) of wt mice is rearranged in favor of the inhibitory inputs in LH of ob/ob mice. Furthermore, the vesicle release from the inhibitory inputs is suppressed by endocannabinoids (eCBs) activating cannabinoid receptor type 1 (CB1) activation. The eCBs, most likely 2-AG, originate from the postsynaptic terminals, where they are being synthesized and “released“ as a reaction to depolarization (a mechanism called: depolarization-induced suppression of inhibition or DSI). Here, I demonstrated that the functional excitatory innervation of OX-N did not differ between ob/ob and wt mice. Furthermore, the activation of presynaptic CB1 receptors suppressed the vesicle release from excitatory inputs, in both wt and ob/ob mice, to the same extent. The imbalance of functional excitatory and inhibitory inputs in ob/ob mice, putatively, leaves OX-N with a hyperpolarized membrane potential and a reduced firing activity. Activation of CB1 receptors, mainly located on inhibitory inputs, eventually activate OX-N by disinhibiting them. Orexinergic neurons possess vast projections throughout the brain, i.a. to the mesoaccumbal dopamine system and the hypothalamus-pituitary-adrenal (HPA) axis. The activation of these two circuits, putatively, results in the increased food intake seen in the ob/ob mouse. Another target area of OX-N is the periaqueductal gray (PAG), playing a key role in nociception via the descending antinociceptive pathways. It has been reported that patients as well as animal models suffering from abnormal feeding behavior also display altered nociception. Furthermore, the administration of orexin A (OX-A) has been demonstrated to suppress inhibitory postsynaptic currents in CB1 receptor activation-mediated way, eventually, resulting in a depolarization of the membrane potential of PAG neurons and, finally, in an increase of firing activity. Intriguingly, these in vitro observations translate to behavior, OX-A administration into PAG elevated the pain threshold in rats during the tail-flick test. ob/ob mice displayed an elevated level of OX-A in PAG, similar to the situation after OX-A administration, hence, we hypothesized that the PAG neurons projecting to the rostroventral medulla were more depolarized and have a higher firing activity in ob/ob mice compared to wt. Indeed, blocking the orexin 1 receptor hyperpolarized the membrane potential and reduced the firing activity of ob/ob PAG neurons, but not wt PAG neurons. Furthermore, ob/ob PAG neurons were more likely to initiate an action potential than wt PAG neurons. Thus, suggesting that the activation of PAG neurons by activated orexinergic inputs results in an elevated pain threshold by further activating the descending antinociceptive pathways. In conclusion, the switch of innervation onto OX-N in favor of inhibitory inputs, caused by the absence of leptin in the ob/ob mouse, activates OX-N by inhibiting their mainly inhibitory inputs by eCB-mediated CB1 receptor activation, resulting in the suppression of vesicle release (DSI). These disinhibited OX-N activate target areas throughout the brain, such as the mesoaccumbal dopamine system and HPA axis, thereby modulating feeding behavior. Furthermore, orexinergic projections to PAG depolarizes the membrane potential and increases the firing activity of PAG neurons projecting to the rostroventral medulla, thereby raising the pain threshold.
Libros sobre el tema "Orexin 1 receptor"
Steiner, Michel Alexander. Insomnia and beyond - Exploring the therapeutic potential of orexin receptor antagonists. Editado por Christopher J. Winrow. Frontiers SA Media, 2014. http://dx.doi.org/10.3389/978-2-88919-330-1.
Texto completoNutt, David J. y Liam J. Nestor. Appetite hormones and addiction. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198797746.003.0012.
Texto completoCapítulos de libros sobre el tema "Orexin 1 receptor"
Patkar, Omkar L., Arnauld Belmer y Selena E. Bartlett. "Orexin Receptor-1 (OX1R)". En Encyclopedia of Signaling Molecules, 3665–71. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_101540.
Texto completoPatkar, Omkar L., Arnauld Belmer y Selena E. Bartlett. "Orexin Receptor-1 (OX1R)". En Encyclopedia of Signaling Molecules, 1–6. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4614-6438-9_101540-1.
Texto completoBernard, René, Ralph Lydic y Helen A. Baghdoyan. "Hypocretin Receptor-Activated G Proteins Revealed by [35S]GTPγS Autoradiography". En The Orexin/Hypocretin System, 83–96. Totowa, NJ: Humana Press, 2006. http://dx.doi.org/10.1385/1-59259-950-8:83.
Texto completoLeonard, Christopher S., Mike Kalogiannis y Kristi A. Kohlmeier. "Hypocretin/Orexin Receptor Functions in Mesopontine Systems Regulating Sleep, Arousal, and Cataplexy". En Narcolepsy, 139–51. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-8390-9_13.
Texto completoSakurai, Takeshi. "Orexin and Orexin Receptors". En The Orexin/Hypocretin System, 13–20. Totowa, NJ: Humana Press, 2006. http://dx.doi.org/10.1385/1-59259-950-8:11.
Texto completoMarcus, Jacob N. y Joel K. Elmquist. "Orexin Projections and Localization of Orexin Receptors". En The Orexin/Hypocretin System, 21–43. Totowa, NJ: Humana Press, 2006. http://dx.doi.org/10.1385/1-59259-950-8:21.
Texto completoMatzeu, Alessandra y Rémi Martin-Fardon. "The Orexin System, Prescription Opioid Use Disorder, and Orexin Receptors Blockade". En Handbook of Substance Misuse and Addictions, 1–17. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-67928-6_91-1.
Texto completo"Hypocretin (Orexin) Receptor 1". En Encyclopedia of Signaling Molecules, 2489. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_105259.
Texto completoShaw, Jessica K., Emily M. Black, Yanan Zhang y Rodrigo A. España. "Hypocretin Receptor 1 Regulation of Dopamine Neurotransmission and Motivated Behavior". En The Orexin/Hypocretin System, 99–120. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-813751-2.00005-x.
Texto completoCataldi, NI, VA Lux-Lantos y C. Libertun. "Orexins (Hypocretins) A and B Modify Orexin 1 Receptor Expression and Gonadotropins Secretion in Anterior Pituitary Cells of Proestrous Rats." En The Endocrine Society's 92nd Annual Meeting, June 19–22, 2010 - San Diego, P2–302—P2–302. Endocrine Society, 2010. http://dx.doi.org/10.1210/endo-meetings.2010.part2.p7.p2-302.
Texto completoActas de conferencias sobre el tema "Orexin 1 receptor"
Wielandt, Ana M., Cynthia Villarroel, Claudia Hurtado, Kento Inada, Hiroshi Kawachi, Daniela Simian, Maria T. Vial et al. "Abstract 5167: Expression levels of orexin receptor 1 in different stages of colorectal cancer". En Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-5167.
Texto completoInformes sobre el tema "Orexin 1 receptor"
Gurevitz, Michael, Michael E. Adams, Boaz Shaanan, Oren Froy, Dalia Gordon, Daewoo Lee y Yong Zhao. Interacting Domains of Anti-Insect Scorpion Toxins and their Sodium Channel Binding Sites: Structure, Cooperative Interactions with Agrochemicals, and Application. United States Department of Agriculture, diciembre de 2001. http://dx.doi.org/10.32747/2001.7585190.bard.
Texto completo