Artículos de revistas sobre el tema "Ordinary differential equations"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Ordinary differential equations.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Ordinary differential equations".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Brauer, Fred, Vladimir I. Arnol'd y Roger Cook. "Ordinary Differential Equations." American Mathematical Monthly 100, n.º 8 (octubre de 1993): 810. http://dx.doi.org/10.2307/2324802.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Rawlins, A. D. y M. Sever. "Ordinary Differential Equations". Mathematical Gazette 72, n.º 462 (diciembre de 1988): 334. http://dx.doi.org/10.2307/3619967.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Kapadia, Devendra A. y V. I. Arnold. "Ordinary Differential Equations". Mathematical Gazette 79, n.º 484 (marzo de 1995): 228. http://dx.doi.org/10.2307/3620107.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Dory, Robert A. "Ordinary Differential Equations". Computers in Physics 3, n.º 5 (1989): 88. http://dx.doi.org/10.1063/1.4822872.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Li, Haoxuan. "The advance of neural ordinary differential ordinary differential equations". Applied and Computational Engineering 6, n.º 1 (14 de junio de 2023): 1283–87. http://dx.doi.org/10.54254/2755-2721/6/20230709.

Texto completo
Resumen
Differential methods are widely used to describe complex continuous processes. The main idea of ordinary differential equations is to treat a specific type of neural network as a discrete equation. Therefore, the differential equation solver can be used to optimize the solution process of the neural network. Compared with the conventional neural network solution, the solution process of the neural ordinary differential equation has the advantages of high storage efficiency and adaptive calculation. This paper first gives a brief review of the residual network (ResNet) and the relationship of ResNet to neural ordinary differential equations. Besides, his paper list three advantages of neural ordinary differential equations compared with ResNet and introduce the class of Deep Neural Network (DNN) models that can be seen as numerical discretization of neural ordinary differential equations (N-ODEs). Furthermore, this paper analyzes a defect of neural ordinary differential equations that do not appear in the traditional deep neural network. Finally, this paper demonstrates how to analyze ResNet with neural ordinary differential equations and shows the main application of neural ordinary differential equations (Neural-ODEs).
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Saltas, Vassilios, Vassilios Tsiantos y Dimitrios Varveris. "Solving Differential Equations and Systems of Differential Equations with Inverse Laplace Transform". European Journal of Mathematics and Statistics 4, n.º 3 (14 de junio de 2023): 1–8. http://dx.doi.org/10.24018/ejmath.2023.4.3.192.

Texto completo
Resumen
The inverse Laplace transform enables the solution of ordinary linear differential equations as well as systems of ordinary linear differentials with applications in the physical and engineering sciences. The Laplace transform is essentially an integral transform which is introduced with the help of a suitable generalized integral. The ultimate goal of this work is to introduce the reader to some of the basic ideas and applications for solving initially ordinary differential equations and then systems of ordinary linear differential equations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Sanchez, David A. "Ordinary Differential Equations Texts." American Mathematical Monthly 105, n.º 4 (abril de 1998): 377. http://dx.doi.org/10.2307/2589736.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Iserles, A., D. W. Jordan y P. Smith. "Nonlinear Ordinary Differential Equations". Mathematical Gazette 72, n.º 460 (junio de 1988): 155. http://dx.doi.org/10.2307/3618957.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Sánchez, David A. "Ordinary Differential Equations Texts". American Mathematical Monthly 105, n.º 4 (abril de 1998): 377–83. http://dx.doi.org/10.1080/00029890.1998.12004897.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Hadeler, K. P. y S. Walcher. "Reducible Ordinary Differential Equations". Journal of Nonlinear Science 16, n.º 6 (29 de junio de 2006): 583–613. http://dx.doi.org/10.1007/s00332-004-0627-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Knorrenschild, Michael. "Differential/Algebraic Equations As Stiff Ordinary Differential Equations". SIAM Journal on Numerical Analysis 29, n.º 6 (diciembre de 1992): 1694–715. http://dx.doi.org/10.1137/0729096.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

MANOFF, S. "GEODESIC AND AUTOPARALLEL EQUATIONS OVER DIFFERENTIABLE MANIFOLDS". International Journal of Modern Physics A 11, n.º 21 (20 de agosto de 1996): 3849–74. http://dx.doi.org/10.1142/s0217751x96001814.

Texto completo
Resumen
The notions of ordinary, covariant and Lie differentials are considered as operators over differentiable manifolds with different (not only by sign) contravariant and covariant affine connections and metric. The difference between the interpretations of the ordinary differential as a covariant basic vector field and as a component of a contravariant vector field is discussed. By means of the covariant metric and the ordinary differential the notion of the line element is introduced and the geodesic equation is obtained and compared with the autoparallel equation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Kvinikadze, Giorgi. "On Kneser-type solutions of sublinear ordinary differential equations". Časopis pro pěstování matematiky 115, n.º 2 (1990): 118–33. http://dx.doi.org/10.21136/cpm.1990.108371.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Afuwape, Anthony Uyi y M. O. Omeike. "Ultimate boundedness of some third order ordinary differential equations". Mathematica Bohemica 137, n.º 3 (2012): 355–64. http://dx.doi.org/10.21136/mb.2012.142900.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Jankowski, Tadeusz. "On numerical solution of ordinary differential equations with discontinuities". Applications of Mathematics 33, n.º 6 (1988): 487–92. http://dx.doi.org/10.21136/am.1988.104326.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Jankowski, Tadeusz. "One-step methods for ordinary differential equations with parameters". Applications of Mathematics 35, n.º 1 (1990): 67–83. http://dx.doi.org/10.21136/am.1990.104388.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Vondra, Alexandr. "Geometry of second-order connections and ordinary differential equations". Mathematica Bohemica 120, n.º 2 (1995): 145–67. http://dx.doi.org/10.21136/mb.1995.126226.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Crilly, Tony, Robert E. O'Malley, Glenn Fulford, Peter Forrester, Arthur Jones, R. M. Mattheij y J. Molenaar. "Thinking about Ordinary Differential Equations". Mathematical Gazette 83, n.º 497 (julio de 1999): 367. http://dx.doi.org/10.2307/3619113.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Chambers, Ll G. y Stephen H. Saperstone. "Introduction to Ordinary Differential Equations". Mathematical Gazette 83, n.º 497 (julio de 1999): 370. http://dx.doi.org/10.2307/3619116.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Harte, R. "Exactness in ordinary differential equations". Irish Mathematical Society Bulletin 0024 (1990): 20–40. http://dx.doi.org/10.33232/bims.0024.20.40.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Kim, Suyong, Weiqi Ji, Sili Deng, Yingbo Ma y Christopher Rackauckas. "Stiff neural ordinary differential equations". Chaos: An Interdisciplinary Journal of Nonlinear Science 31, n.º 9 (septiembre de 2021): 093122. http://dx.doi.org/10.1063/5.0060697.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Tryhuk, Václav y Veronika Chrastinová. "Automorphisms of Ordinary Differential Equations". Abstract and Applied Analysis 2014 (2014): 1–32. http://dx.doi.org/10.1155/2014/482963.

Texto completo
Resumen
The paper deals with the local theory of internal symmetries of underdetermined systems of ordinary differential equations in full generality. The symmetries need not preserve the choice of the independent variable, the hierarchy of dependent variables, and the order of derivatives. Internal approach to the symmetries of one-dimensional constrained variational integrals is moreover proposed without the use of multipliers.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Haraoka, Yoshishige. "Prolongability of Ordinary Differential Equations". Journal of Nonlinear Mathematical Physics 20, sup1 (8 de noviembre de 2013): 70–84. http://dx.doi.org/10.1080/14029251.2013.862435.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Press, William H. y Saul A. Teukolsky. "Integrating Stiff Ordinary Differential Equations". Computers in Physics 3, n.º 3 (1989): 88. http://dx.doi.org/10.1063/1.4822847.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Pai, M. "Book reviews - Ordinary differential equations". IEEE Control Systems Magazine 6, n.º 1 (febrero de 1986): 50. http://dx.doi.org/10.1109/mcs.1986.1105053.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Weidman, P. "Thinking about ordinary differential equations". European Journal of Mechanics - B/Fluids 18, n.º 2 (marzo de 1999): 315–17. http://dx.doi.org/10.1016/s0997-7546(99)80029-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Fečkan, Michal. "Singularly perturbed ordinary differential equations". Journal of Mathematical Analysis and Applications 170, n.º 1 (octubre de 1992): 214–24. http://dx.doi.org/10.1016/0022-247x(92)90015-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Schwarz, Fritz. "Decomposition of ordinary differential equations". Bulletin of Mathematical Sciences 7, n.º 3 (22 de noviembre de 2017): 575–613. http://dx.doi.org/10.1007/s13373-017-0110-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Novick-Cohen, Amy. "Ordinary and partial differential equations". Mathematical Biosciences 94, n.º 1 (mayo de 1989): 151–52. http://dx.doi.org/10.1016/0025-5564(89)90075-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Tóthová, Mária y Oleg Palumbíny. "On monotone solutions of the fourth order ordinary differential equations". Czechoslovak Mathematical Journal 45, n.º 4 (1995): 737–46. http://dx.doi.org/10.21136/cmj.1995.128553.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Artstein, Zvi. "On singularly perturbed ordinary differential equations with measure-valued limits". Mathematica Bohemica 127, n.º 2 (2002): 139–52. http://dx.doi.org/10.21136/mb.2002.134168.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Polášek, Vladimír y Irena Rachůnková. "Singular Dirichlet problem for ordinary differential equations with $\phi$-Laplacian". Mathematica Bohemica 130, n.º 4 (2005): 409–25. http://dx.doi.org/10.21136/mb.2005.134206.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Tsyfra, Ivan. "On classical symmetries of ordinary differential equations related to stationary integrable partial differential equations". Opuscula Mathematica 41, n.º 5 (2021): 685–99. http://dx.doi.org/10.7494/opmath.2021.41.5.685.

Texto completo
Resumen
We study the relationship between the solutions of stationary integrable partial and ordinary differential equations and coefficients of the second-order ordinary differential equations invariant with respect to one-parameter Lie group. The classical symmetry method is applied. We prove that if the coefficients of ordinary differential equation satisfy the stationary integrable partial differential equation with two independent variables then the ordinary differential equation is integrable by quadratures. If special solutions of integrable partial differential equations are chosen then the coefficients satisfy the stationary KdV equations. It was shown that the Ermakov equation belong to a class of these equations. In the framework of the approach we obtained the similar results for generalized Riccati equations. By using operator of invariant differentiation we describe a class of higher order ordinary differential equations for which the group-theoretical method enables us to reduce the order of ordinary differential equation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Zhang, Zijia, Yaoming Cai y Dongfang Zhang. "Solving Ordinary Differential Equations With Adaptive Differential Evolution". IEEE Access 8 (2020): 128908–22. http://dx.doi.org/10.1109/access.2020.3008823.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Goltser, Y. y E. Litsyn. "Volterra integro-differential equations and infinite systems of ordinary differential equations". Mathematical and Computer Modelling 42, n.º 1-2 (julio de 2005): 221–33. http://dx.doi.org/10.1016/j.mcm.2004.01.014.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Dhariwal, Monika y Nahid Fatima. "RHPF for Solving Ordinary Differential Equations". Journal of Intelligent Systems and Computing 1, n.º 1 (31 de diciembre de 2020): 37–45. http://dx.doi.org/10.51682/jiscom.00101003.2020.

Texto completo
Resumen
The current research paper includes the latest research in the field of science. We have introduced the utilization of the RHPF in the current paper. We have solved ordinary differential equations by using RHPF. We compared the decision of using RHPF with those using HPM to understand the new method's efficacy and benefit. The goal of the analysis is to show that the correct construction of the homotopy determines the solution with less computation than with the current method and produces trustworthy outcomes. We've found three ODE problems. The results show that this method is useful and impressive in explaining the ODE. The RHPF is known as a new idea, new techniques of creation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

HarrarII, D. L. y M. R. Osborne. "Computing eigenvalues of ordinary differential equations". ANZIAM Journal 44 (1 de abril de 2003): 313. http://dx.doi.org/10.21914/anziamj.v44i0.684.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Skórnik, Krystyna y Joseph Wloka. "m-Reduction of ordinary differential equations". Colloquium Mathematicum 78, n.º 2 (1998): 195–212. http://dx.doi.org/10.4064/cm-78-2-195-212.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Ungar, Abraham. "Addition Theorems in Ordinary Differential Equations". American Mathematical Monthly 94, n.º 9 (noviembre de 1987): 872. http://dx.doi.org/10.2307/2322823.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Brindley, G., E. L. Ince y I. N. Sneddon. "The Solution of Ordinary Differential Equations". Mathematical Gazette 72, n.º 460 (junio de 1988): 154. http://dx.doi.org/10.2307/3618956.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Butcher, John C. y Lawrence F. Shampine. "Numerical Solution of Ordinary Differential Equations." Mathematics of Computation 64, n.º 211 (julio de 1995): 1345. http://dx.doi.org/10.2307/2153505.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Anumasa, Srinivas y P. K. Srijith. "Latent Time Neural Ordinary Differential Equations". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 6 (28 de junio de 2022): 6010–18. http://dx.doi.org/10.1609/aaai.v36i6.20547.

Texto completo
Resumen
Neural ordinary differential equations (NODE) have been proposed as a continuous depth generalization to popular deep learning models such as Residual networks (ResNets). They provide parameter efficiency and automate the model selection process in deep learning models to some extent. However, they lack the much-required uncertainty modelling and robustness capabilities which are crucial for their use in several real-world applications such as autonomous driving and healthcare. We propose a novel and unique approach to model uncertainty in NODE by considering a distribution over the end-time T of the ODE solver. The proposed approach, latent time NODE (LT-NODE), treats T as a latent variable and apply Bayesian learning to obtain a posterior distribution over T from the data. In particular, we use variational inference to learn an approximate posterior and the model parameters. Prediction is done by considering the NODE representations from different samples of the posterior and can be done efficiently using a single forward pass. As T implicitly defines the depth of a NODE, posterior distribution over T would also help in model selection in NODE. We also propose, adaptive latent time NODE (ALT-NODE), which allow each data point to have a distinct posterior distribution over end-times. ALT-NODE uses amortized variational inference to learn an approximate posterior using inference networks. We demonstrate the effectiveness of the proposed approaches in modelling uncertainty and robustness through experiments on synthetic and several real-world image classification data.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Malacka, Zuzana. "Pursuit Curves and Ordinary Differential Equations". Communications - Scientific letters of the University of Zilina 14, n.º 1 (31 de marzo de 2012): 66–68. http://dx.doi.org/10.26552/com.c.2012.1.66-68.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Braaksma, Boele. "Multisummability and ordinary meromorphic differential equations". Banach Center Publications 97 (2012): 29–38. http://dx.doi.org/10.4064/bc97-0-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

POLIASHENKO, MAXIM y CYRUS K. AIDUN. "COMPUTATIONAL DYNAMICS OF ORDINARY DIFFERENTIAL EQUATIONS". International Journal of Bifurcation and Chaos 05, n.º 01 (febrero de 1995): 159–74. http://dx.doi.org/10.1142/s0218127495000132.

Texto completo
Resumen
Discrete schemes, used to perform time integration of ODE’s, are expected to exhibit qualitatively ‘true’ dynamics in terms of the solutions and their stability. In past years, it has been discovered that such discretizations may cause spurious steady states and some explicit schemes may produce ‘computational chaos.’ In this study, we show that implicit time integration schemes, such as the backward Euler method, can also produce computationally chaotic solutions. Furthermore, we show that the opposite phenomenon may also take place both for explicit and for implicit schemes: computationally generated ‘spurious order’ may replace the true chaotic solution before the scheme becomes linearly unstable. The numerical solution may become chaotic again as the discretization step is further increased. The spurious computational order and chaos are discussed by solving low-dimensional dynamical systems, as well as a large system of ODE representing the solution to the Navier-Stokes equation. Our results support the point of view that the deviations in the behavior of the computed solution from the true solution has deterministic character with the time step playing the role of an artificial bifurcation parameter.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Swinnerton-Dyer, Peter y Thomas Wagenknecht. "Some third-order ordinary differential equations". Bulletin of the London Mathematical Society 40, n.º 5 (29 de mayo de 2008): 725–48. http://dx.doi.org/10.1112/blms/bdn046.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Krogh, Fred T. "Stepsize selection for ordinary differential equations". ACM Transactions on Mathematical Software 37, n.º 2 (abril de 2010): 1–11. http://dx.doi.org/10.1145/1731022.1731025.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Kalas, Josef. "Nonuniqueness results for ordinary differential equations". Czechoslovak Mathematical Journal 48, n.º 2 (junio de 1998): 373–84. http://dx.doi.org/10.1023/a:1022853923977.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

AM, K. SELV. "Alternative Methods of Ordinary Differential Equations". International Journal of Mathematics Trends and Technology 54, n.º 6 (25 de febrero de 2018): 448–53. http://dx.doi.org/10.14445/22315373/ijmtt-v54p554.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Voorhees, Burton y Alexander Nip. "Ordinary Differential Equations with Star Structure". Journal of Dynamical Systems and Geometric Theories 3, n.º 2 (enero de 2005): 121–52. http://dx.doi.org/10.1080/1726037x.2005.10698495.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía