Literatura académica sobre el tema "Optoelectronic devices"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Optoelectronic devices".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Optoelectronic devices"
Miroshnichenko, Anna S., Vladimir Neplokh, Ivan S. Mukhin y Regina M. Islamova. "Silicone Materials for Flexible Optoelectronic Devices". Materials 15, n.º 24 (7 de diciembre de 2022): 8731. http://dx.doi.org/10.3390/ma15248731.
Texto completoKausar, Ayesha, Ishaq Ahmad, Malik Maaza, M. H. Eisa y Patrizia Bocchetta. "Polymer/Fullerene Nanocomposite for Optoelectronics—Moving toward Green Technology". Journal of Composites Science 6, n.º 12 (16 de diciembre de 2022): 393. http://dx.doi.org/10.3390/jcs6120393.
Texto completoSang, Xianhe, Yongfu Wang, Qinglin Wang, Liangrui Zou, Shunhao Ge, Yu Yao, Xueting Wang, Jianchao Fan y Dandan Sang. "A Review on Optoelectronical Properties of Non-Metal Oxide/Diamond-Based p-n Heterojunction". Molecules 28, n.º 3 (30 de enero de 2023): 1334. http://dx.doi.org/10.3390/molecules28031334.
Texto completoAlles, M. A., S. M. Kovalev y S. V. Sokolov. "Optoelectronic Defuzzification Devices". Физические основы приборостроения 1, n.º 3 (15 de septiembre de 2012): 83–91. http://dx.doi.org/10.25210/jfop-1203-083091.
Texto completoBhattacharya, Pallab y Lily Y. Pang. "Semiconductor Optoelectronic Devices". Physics Today 47, n.º 12 (diciembre de 1994): 64. http://dx.doi.org/10.1063/1.2808754.
Texto completoOsten, W. "Advanced Optoelectronic Devices". Optics & Laser Technology 31, n.º 8 (noviembre de 1999): 613–14. http://dx.doi.org/10.1016/s0030-3992(00)00008-6.
Texto completoJerrard, H. G. "Picosecond optoelectronic devices". Optics & Laser Technology 18, n.º 2 (abril de 1986): 105. http://dx.doi.org/10.1016/0030-3992(86)90049-6.
Texto completoChapman, David. "Optoelectronic semiconductor devices". Microelectronics Journal 25, n.º 8 (noviembre de 1994): 769. http://dx.doi.org/10.1016/0026-2692(94)90143-0.
Texto completoDjuris˘Ić, A. B. y W. K. Chan. "Organic Optoelectronic Devices". HKIE Transactions 11, n.º 2 (enero de 2004): 44–52. http://dx.doi.org/10.1080/1023697x.2004.10667955.
Texto completoVazhdaev, Konstantin, Marat Urakseev, Azamat Allaberdin y Kostantin Subkhankulov. "OPTOELECTRONIC DEVICES BASED ON DIFFRACTION GRATINGS FROM STANDING ELASTIC WAVES". Electrical and data processing facilities and systems 18, n.º 3-4 (2022): 151–58. http://dx.doi.org/10.17122/1999-5458-2022-18-3-4-151-158.
Texto completoTesis sobre el tema "Optoelectronic devices"
Thompson, Paul. "II-VI optoelectronic devices". Thesis, Heriot-Watt University, 1996. http://hdl.handle.net/10399/726.
Texto completoVaughan, John. "Optoelectronic devices for spectrochemical sensing". Thesis, University of Manchester, 2005. https://www.research.manchester.ac.uk/portal/en/theses/optoelectronic-devices-for-spectrochemical-sensing(a6ea9f13-f235-4920-b63e-51e64a402327).html.
Texto completoHiggins, Steven Paul. "Computer simulation of optoelectronic devices". Thesis, University of Essex, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413634.
Texto completoShapira, Ofer Ph D. Massachusetts Institute of Technology. "Optical and optoelectronic fiber devices". Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40511.
Texto completoIncludes bibliographical references (p. 111-119).
The ability to integrate materials with disparate electrical, thermal, and optical properties into a single fiber structure enabled the realization of fiber devices with diverse and complex functionalities. Amongst those, demonstrated first in our work, are the surface-emitting fiber laser, the hollow-core fiber amplifier, the thermally self-monitored high-power transmission fiber device, and the photo-detecting fiber-web based imaging system. This work presents the design, analysis, and characterization of those devices. It opens with a study of the transmission properties of the multimode hollow-core, photonic bandgap fiber constructed of a periodic multilayer cladding. A defect is then introduced into one of the cladding layers and the interaction between core and defect modes is investigated. The second chapter addresses the experimental problem encountered in many multimode waveguide applications: how to extract, and to some extent to control, the modal content of the field at the output of a waveguide. We developed a non-interferometric approach to achieve mode decomposition based on a modified phase retrieval algorithm that can yield the complete vectorial eigenmode content of any general waveguiding structure and demonstrated its validity experimentally. In the third chapter an active material is introduced into the hollow-core to form a surface-emitting fiber laser. A unique azimuthally anisotropic optical wave front results from the interplay between the cylindrical resonator, the anisotropic gain medium, and the linearly polarized axial pump. We show that the direction and polarization of the wave front are directly controlled by the pump polarization.
(cont.) In the last two chapters, a new type of fiber is presented, constructed of semiconducting, insulating, and conducting materials, which enables the integration of semiconductor devices into the fiber structure. In the first we demonstrate a fiber comprised of an optical transmission element designed for the transport of high power radiation and multiple thermal-detecting elements encompassing the hollow core for distributed temperature monitoring and real-time failure detection. In the second, we demonstrate optical imaging using large-area, three-dimensional optical-detector arrays, built from one-dimensional photodetecting optoelectronic fibers. Lensless imaging of an object is achieved using a phase retrieval algorithm.
by Ofer Shapira.
Ph.D.
Martins, Emiliano. "Light management in optoelectronic devices". Thesis, University of St Andrews, 2014. http://hdl.handle.net/10023/6133.
Texto completoLi, Guangru. "Nanostructured materials for optoelectronic devices". Thesis, University of Cambridge, 2016. https://www.repository.cam.ac.uk/handle/1810/263671.
Texto completoDibos, Alan. "Nanofabrication of Hybrid Optoelectronic Devices". Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17463975.
Texto completoEngineering and Applied Sciences - Applied Physics
Tan, Eugene. "Design, fabrication and characterization of N-channel InGaAsP-InP based inversion channel technology devices (ICT) for optoelectronic integrated circuits (OEIC), double heterojunction optoelectronic switches (DOES), heterojunction field-effect transistors (HFET), bipolar inversion channel field-effect transistors (BICFET) and bipolar inversion channel phototransistors (BICPT)". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0006/NQ42767.pdf.
Texto completoKim, Yong Hyun. "Alternative Electrodes for Organic Optoelectronic Devices". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-113279.
Texto completoDie vorliegende Arbeit demonstriert einen Ansatz zur Verwirklichung von kostengünstigen, semi-transparenten, langzeitstabilen und effizienten Organischen Photovoltaik Zellen (OPV) und Organischen Leuchtdioden (OLEDs) durch die Nutzung innovativer Elektrodensysteme. Dazu werden leitfähige Polymere, dotiertes ZnO und Kohlenstoff-Nanoröhrchen eingesetzt. Diese alternativen Elektrodensysteme sind vielversprechende Kandidaten, um das konventionell genutzte Indium-Zinn-Oxid (ITO), welches aufgrund seines hohen Preises und spröden Materialverhaltens einen stark begrenz Faktor bei der Herstellung von kostengünstigen, flexiblen, organischen Bauelementen darstellt, zu ersetzten. Zunächst werden langzeitstabile, effiziente, ITO-freie Solarzellen und transparente OLEDs auf der Basis von Poly(3,4-ethylene-dioxythiophene):Poly(styrenesulfonate) (PEDOT:PSS) Elektroden beschrieben, welche mit Hilfe einer Lösungsmittel-Nachprozessierung und einer Optimierung der Bauelementstruktur hergestellt wurden. Zusätzlich wurde ein leistungsfähiges, internes Lichtauskopplungs-System für weiße OLEDs, basierend auf PEDOT:PSS-beschichteten Metalloxid-Nanostrukturen, entwickelt. Weiterhin werden hoch effiziente, ITO-freie OPV Zellen und OLEDs vorgestellt, bei denen mit verschiedenen nicht-metallischen Elementen dotierte ZnO Elektroden zur Anwendung kamen. Die optimierten ZnO Elektroden bieten im Vergleich zu unserem Laborstandard ITO eine signifikant verbesserte Effizienz. Abschließend werden semi-transparente OPV Zellen mit freistehenden Kohlenstoff-Nanoröhrchen als transparente Top-Elektrode vorgestellt. Die daraus resultierenden Zellen zeigen sehr niedrige Leckströme und eine zufriedenstellende Stabilität. In diesem Zusammenhang wurde auch verschiedene Kombinationen von Elektrodenmaterialen als Top- und Bottom-Elektrode für semi-transparente, ITO-freie OPV Zellen untersucht. Zusammengefasst bestätigen die Resultate, dass OPV und OLEDs basierend auf alternativen Elektroden vielversprechende Eigenschaften für die praktische Anwendung in der Herstellung von effizienten, kostengünstigen, flexiblen und semi-transparenten Bauelement besitzen
Yiu, Wai-kin y 姚偉健. "Plasmonic enhancement of organic optoelectronic devices". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/211120.
Texto completopublished_or_final_version
Physics
Master
Master of Philosophy
Libros sobre el tema "Optoelectronic devices"
Dragoman, Daniela. Advanced optoelectronic devices. Berlin: Springer, 1999.
Buscar texto completoMooney, William J. Optoelectronic devices and principles. Englewood Cliffs, N.J: Prentice Hall, 1991.
Buscar texto completoPiprek, Joachim, ed. Optoelectronic Devices. New York: Springer-Verlag, 2005. http://dx.doi.org/10.1007/b138826.
Texto completoBhattacharya, Pallab. Semiconductor optoelectronic devices. 2a ed. Upper Saddle River, NJ: Prentice Hall, 1997.
Buscar texto completoDragoman, Daniela y Mircea Dragoman. Advanced Optoelectronic Devices. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03904-5.
Texto completoBhattacharya, P. K. Semiconductor optoelectronic devices. Englewood Cliffs, N.J: Prentice Hall, 1993.
Buscar texto completoDragoman, Daniela. Advanced Optoelectronic Devices. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999.
Buscar texto completoBhattacharya, Pallab. Semiconductor optoelectronic devices. Englewood Cliffs, N.J: Prentice Hall, 1994.
Buscar texto completoBhattacharya, Pallab Kumar. Semiconductor optoelectronic devices. London: Prentice-Hall International, 1994.
Buscar texto completoPradhan, Basudev, ed. Perovskite Optoelectronic Devices. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-57663-8.
Texto completoCapítulos de libros sobre el tema "Optoelectronic devices"
Panish, Morton B. y Henryk Temkin. "Optoelectronic Devices". En Gas Source Molecular Beam Epitaxy, 322–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78127-8_10.
Texto completoLunardi, Leda, Sudha Mokkapati y Chennupati Jagadish. "Optoelectronic Devices". En Guide to State-of-the-Art Electron Devices, 265–74. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118517543.ch20.
Texto completoEvstigneev, Mykhaylo. "Optoelectronic Devices". En Introduction to Semiconductor Physics and Devices, 275–304. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08458-4_12.
Texto completoGupta, K. M. y Nishu Gupta. "Optoelectronic Devices". En Advanced Semiconducting Materials and Devices, 311–50. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19758-6_9.
Texto completoPatrick, Dale R., Stephen W. Fardo, Ray E. Richardson y Vigyan Vigs Chandra. "Optoelectronic Devices". En Electronic Devices and Circuit Fundamentals, Solution Manual, 76–86. New York: River Publishers, 2023. http://dx.doi.org/10.1201/9781003403272-13.
Texto completoPatrick, Dale R., Stephen W. Fardo, Ray E. Richardson y Vigyan (Vigs) Chandra. "Optoelectronic Devices". En Electronic Devices and Circuit Fundamentals, 511–80. New York: River Publishers, 2023. http://dx.doi.org/10.1201/9781003393139-13.
Texto completoNelson, A. W. "Key Optoelectronic Devices". En Electronic Materials, 67–89. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3818-9_7.
Texto completoLozes-Dupuy, F., H. Martinot y S. Bonnefont. "Optoelectronic semiconductor devices". En Perspectives for Parallel Optical Interconnects, 149–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-49264-8_7.
Texto completoBanerjee, Amal. "Semiconductor Optoelectronic Devices". En Synthesis Lectures on Engineering, Science, and Technology, 245–74. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-45750-0_14.
Texto completoDragoman, Daniela y Mircea Dragoman. "Basic Concepts of Optoelectronic Devices". En Advanced Optoelectronic Devices, 1–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03904-5_1.
Texto completoActas de conferencias sobre el tema "Optoelectronic devices"
Ruden, P. P. "Materials-theory-based device modeling for III-nitride devices". En Optoelectronics '99 - Integrated Optoelectronic Devices, editado por Gail J. Brown y Manijeh Razeghi. SPIE, 1999. http://dx.doi.org/10.1117/12.344555.
Texto completoJabbour, Ghassan E., Bernard Kippelen, Neal R. Armstrong y Nasser Peyghambarian. "Organic electroluminescent devices: aluminum alkali-halide composite cathode for enhanced device performance". En Optoelectronics '99 - Integrated Optoelectronic Devices, editado por Bernard Kippelen. SPIE, 1999. http://dx.doi.org/10.1117/12.348413.
Texto completo"Optoelectronic devices". En 2011 69th Annual Device Research Conference (DRC). IEEE, 2011. http://dx.doi.org/10.1109/drc.2011.5994526.
Texto completo"Optoelectronic devices". En 2013 71st Annual Device Research Conference (DRC). IEEE, 2013. http://dx.doi.org/10.1109/drc.2013.6633854.
Texto completoJain, Nikhil, Himanshu Singhvi, Siddharth Jain y Rishabh upadhyay. "Optoelectronic devices". En ICWET '10: International Conference and Workshop on Emerging Trends in Technology. New York, NY, USA: ACM, 2010. http://dx.doi.org/10.1145/1741906.1742213.
Texto completoMcInerney, John G. "Bistable Optoelectronic Devices". En O-E/Fibers '87, editado por Theodore E. Batchman, Richard F. Carson, Robert L. Galawa y Henry J. Wojtunik. SPIE, 1987. http://dx.doi.org/10.1117/12.967536.
Texto completoKobayashi, Tetsuro y Bong Young Lee. "Ultrafast Optoelectronic Devices". En 1991 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1991. http://dx.doi.org/10.7567/ssdm.1991.s-e-2.
Texto completoTzolov, Velko P., Dazeng Feng, Stoyan Tanev y Z. Jan Jakubczyk. "Modeling tools for integrated and fiber optical devices". En Optoelectronics '99 - Integrated Optoelectronic Devices, editado por Giancarlo C. Righini y S. Iraj Najafi. SPIE, 1999. http://dx.doi.org/10.1117/12.343726.
Texto completoLaporta, Paolo, Stefano Longhi, Gino Sorbello, Stefano Taccheo y Cesare Svelto. "Erbium-ytterbium miniaturized laser devices for optical communications". En Optoelectronics '99 - Integrated Optoelectronic Devices, editado por Shibin Jiang y Seppo Honkanen. SPIE, 1999. http://dx.doi.org/10.1117/12.344495.
Texto completoHood, Patrick J., John C. Mastrangelo y Shaw H. Chen. "New materials technology for latching electro-optic devices". En Optoelectronics '99 - Integrated Optoelectronic Devices, editado por Julian P. G. Bristow y Suning Tang. SPIE, 1999. http://dx.doi.org/10.1117/12.344610.
Texto completoInformes sobre el tema "Optoelectronic devices"
Kolodzey, James. SiGeC Optoelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, enero de 2000. http://dx.doi.org/10.21236/ada377834.
Texto completoKolodzey, James. SiGeC Alloys for Optoelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1995. http://dx.doi.org/10.21236/ada295007.
Texto completoGeorge, Nicholas. Optoelectronic Materials Devices Systems Research. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1998. http://dx.doi.org/10.21236/ada358443.
Texto completoLaBounty, Christopher, Ali Shakouri, Patrick Abraham y John E. Bowers. Integrated Cooling for Optoelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, enero de 2000. http://dx.doi.org/10.21236/ada459476.
Texto completoMiller, David A. Ultrafast Quantum Well Optoelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, julio de 2000. http://dx.doi.org/10.21236/ada384413.
Texto completoPeyghambarian, Nasser. (AASERT 95) Quantum Dot Devices and Optoelectronic Device Characterization. Fort Belvoir, VA: Defense Technical Information Center, mayo de 1998. http://dx.doi.org/10.21236/ada379743.
Texto completoDing, Yujie J. Optoelectronic Devices Based on Novel Semiconductor Structures. Fort Belvoir, VA: Defense Technical Information Center, junio de 2006. http://dx.doi.org/10.21236/ada451063.
Texto completoHolub, M., D. Saha, D. Basu, P. Bhattacharya, L. Siddiqui y S. Datta. Spin-Based Devices for Magneto-Optoelectronic Integrated Circuits. Fort Belvoir, VA: Defense Technical Information Center, abril de 2009. http://dx.doi.org/10.21236/ada498345.
Texto completoChaung, S. L. Semiconductor Quantum-Well Lasers and Ultrafast Optoelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1996. http://dx.doi.org/10.21236/ada319314.
Texto completoLi, Baohua. Epitaxial Technologies for SiGeSn High Performance Optoelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, abril de 2015. http://dx.doi.org/10.21236/ad1012928.
Texto completo